Strangeness and hadronic resonance production in pp, p-Pb and Pb-Pb collisions measured by ALICE at the LHC

Jihye Song
for the ALICE collaboration
Pusan National University, Korea
Outline

- Physics motivation
- **ALICE** detector
- Multiplicity-dependent *strangeness* production
- Measurement of mesonic and baryonic *resonances*
- Summary
Strangeness enhancement

- Enhanced production of strangeness particles in AA w.r.t. pp

<table>
<thead>
<tr>
<th>Mass [GeV/c^2]</th>
<th>quark contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ξ</td>
<td>dss</td>
</tr>
<tr>
<td>1.321</td>
<td></td>
</tr>
<tr>
<td>Ω</td>
<td>sss</td>
</tr>
<tr>
<td>1.672</td>
<td></td>
</tr>
</tbody>
</table>

Hyperon-to-pion ratio

- (c) \(\Xi/\pi \)
- \(\Omega/\pi \)

- ALICE Pb-Pb at 2.76 TeV
- ALICE pp at 7 TeV
- ALICE pp at 900 GeV
- STAR Au-Au, pp at 200 GeV

C. ALICE Pb-Pb at 2.76 TeV

Jihye Song
Strangeness enhancement

- Enhanced production of strangeness particles in AA w.r.t. pp

<table>
<thead>
<tr>
<th>Mass [GeV/c^2]</th>
<th>quark contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ξ</td>
<td>1.321</td>
</tr>
<tr>
<td>dss</td>
<td></td>
</tr>
<tr>
<td>Ω</td>
<td>1.672</td>
</tr>
<tr>
<td>sss</td>
<td></td>
</tr>
</tbody>
</table>

What are the latest results on strangeness production in different colliding systems at the top LHC energy?
Strangeness enhancement

- Enhanced production of strangeness particles in AA w.r.t. pp

<table>
<thead>
<tr>
<th></th>
<th>Mass[GeV/c²]</th>
<th>quark contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ξ</td>
<td>1.321</td>
<td>dss</td>
</tr>
<tr>
<td>Ω</td>
<td>1.672</td>
<td>sss</td>
</tr>
</tbody>
</table>

What are the latest results on strangeness production in different colliding systems at the top LHC energy?

What causes the enhancement?
Probing the hadronic phase

Inelastic Collisions
- Hadron momenta and yields change

(Pseudo-)elastic Collisions
- Hadron momenta change, but most yields fixed

Regeneration
- Pseudo-elastic scattering through resonance state
 - Increase in resonance yield

Re-scattering
- Elastic scattering smears out mass peak
 - Reduces resonance yield

- Pseudo-elastic scattering through a different resonance state
 - Reduces yield of original resonance

Resonances
- Different short lifetimes
 - Allow to study properties of hadronic phase in terms of **re-scattering and regeneration** effects

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Lifetime [fm/c]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho)</td>
<td>1.3</td>
</tr>
<tr>
<td>(K^{*0})</td>
<td>4.2</td>
</tr>
<tr>
<td>(\Lambda^{*})</td>
<td>12.6</td>
</tr>
<tr>
<td>(\Xi^{*0})</td>
<td>21.7</td>
</tr>
<tr>
<td>(\phi)</td>
<td>46.2</td>
</tr>
</tbody>
</table>
The ALICE detector

<table>
<thead>
<tr>
<th>System</th>
<th>Year(s)</th>
<th>√s [TeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb-Pb</td>
<td>2010-2011</td>
<td>2.76</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>5.02</td>
</tr>
<tr>
<td>Xe-Xe</td>
<td>2017</td>
<td>5.44</td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td>5.02</td>
</tr>
<tr>
<td>p-Pb</td>
<td>2016</td>
<td>5.02, 8.16</td>
</tr>
<tr>
<td></td>
<td>2009-2013</td>
<td>0.9, 2.76, 7, 8</td>
</tr>
<tr>
<td>pp</td>
<td>2015, 2017</td>
<td>5.02, 13</td>
</tr>
</tbody>
</table>
The ALICE detector

- **Inner Tracking System (ITS)**
 - SPD, SDD, SSD
 - Trigger, tracking, vertex, PID (dE/dx)
The ALICE detector

- **Time Projection Chamber (TPC)**
 - Gas-filled ionization detector
 - Tracking, vertex, PID, (dE/dx)
The ALICE detector

- Time Of Flight (TOF)
 - PID through particle time of flight
The ALICE detector

- V0A and V0C
 - Trigger, centrality/multiplicity estimator
Strangeness particle p_T-spectra in Pb-Pb at $\sqrt{s_{NN}} = 5.02$ TeV

K^0

Pb-Pb $\sqrt{s_{NN}} = 5.02$ TeV

$|y| < 0.5$

Λ

Pb-Pb $\sqrt{s_{NN}} = 5.02$ TeV

$|y| < 0.5$

$\Xi^-\Omega^-$

Pb-Pb $\sqrt{s_{NN}} = 5.02$ TeV

$|y| < 0.5$

Jihye Song

ICHEP2018
Yields to π ratio as a function of multiplicity

- Smooth evolution from pp to $Pb-Pb$ collisions
- At similar multiplicity, no dependence with system nor energy is observed
Relative strangeness production

- Enhancement for small systems, saturation for large system
 - strangeness enhancement increases with **strange-quark** content

Nature Physics 13 (2017) 535-539

Jihye Song
Relative strangeness production

- Enhancement for small systems, saturation for large system
 - strangeness enhancement increases with strange-quark content

Open question!
Does ϕ behave as a non-strange or double strange particle?

Nature Physics 13 (2017) 535-539
Hidden & Open strangeness

\[\phi/\pi: (|S|=0)/(|S|=0) \]

- **Ratio** \(\phi/\pi \)
 - large systems: described by thermal model
 - small systems: increase with multiplicity
• Ratio ϕ/π
 - large systems: described by thermal model
 - small systems: increase with multiplicity

• Ratios ϕ/K and Ξ/ϕ fairly flat across wide multiplicity range
 - The ϕ has “effective strangeness” of 1-2 units
Resonances p_T-spectra in Pb-Pb

Lifetime(fm/c): $\tau_{\rho}(1.3) < \tau_{K^*}(4.2) < \tau_{\Lambda^*}(12.6) < \tau_{\Xi^*}(21.7) < \tau_{\Phi}(46.2)$

Resonances p_T-spectra in Pb-Pb

Lifetime(fm/c): $T_\rho(1.3) < T_{K^*}(4.2) < T_{\Lambda^*}(12.6) < T_{\Xi^*}(21.7) < T_\Phi(46.2)$

https://arxiv.org/abs/1805.04361

Jihye Song
Resonance to long-lived particle ratio

- Suppression of ρ^0/π and K^{*0}/K ratios in central Pb-Pb w.r.t. smaller system such as peripheral Pb-Pb, p-Pb and pp
 - Suggests re-scattering is dominant over regeneration for short-lived resonances
- No suppression ϕ/K due to larger lifetime

\[\text{Lifetime(fm/c): } T_\rho(1.3) < T_{K^*}(4.2) < T_{\Lambda^*}(12.6) < T_{\Xi^*}(21.7) < T_\Phi(46.2) \]
Resonance to long-lived particle ratio

- Suppression of Λ^*/Λ in most central Pb-Pb (0-20\%) wrt. pp, p-Pb (d-Au), peripheral Pb-Pb (Au-Au)
- Thermal models overestimate the data in Pb-Pb
- Qualitatively described by EPOS with UrQMD - overestimates the ratio

Lifetime (fm/c): $T_\rho(1.3) < T_{K^*}(4.2) < T_{\Lambda^*}(12.6) < T_{\Xi^*}(21.7) < T_{\Phi}(46.2)$
Resonance to long-lived particle ratio

- Ξ^*0/Ξ in pp and p-Pb
 - No clear multiplicity dependence
 - Higher than pQCD-inspired models

- In Pb-Pb
 - No significant centrality dependence
 - Lower in (semi-)central Pb-Pb than pp and p-Pb
 - Lower than thermal model predictions
 - Possible weak suppression

Lifetime (fm/c): $T_\rho(1.3) < T_{K^*}(4.2) < T_{\Lambda^*}(12.6) < T_{\Xi^*}(21.7) < T_{\Phi}(46.2)$
• **ALICE** has measured comprehensive set of identified particles

• We presented latest results on **multiplicity-dependent strangeness** production in all the available colliding systems at the top LHC energy
 - *smooth enhancement* has been observed with multiplicity
 - the enhancement increases with *strangeness content*
 - at similar multiplicity, no dependence with system nor energy is observed
 - ϕ has *effective strangeness of 1-2 units*

• Measurements of mesonic and baryonic **resonances** were presented
 - *suppression of short-lived resonances*, ρ^0, K^{*0}, Λ^{*0}, has been observed in most central collisions w.r.t. small collision systems
 - *re-scattering is dominant over regeneration*
 - there is **no suppression of long-lived resonances**, ϕ