Recent results from the strong interaction programme of the NA61/SHINE experiment

Grzegorz Stefanek

for the NA61/SHINE collaboration

Jan Kochanowski University in Kielce

- **Motivation**
- The onset of deconfinement
- The onset of fireball
- The critical point
- Open charm measurements
- Future plans (beyond 2020)
- Summary

Motivation

N. Brambilla et al., arXiv:1404.3723v2 [hep-ph], 2014.

QGP phase

1st order region starts

Heavy ion

beam momentum [A GeV/c]

Comprehensive 2D scan of p+p, p+A and A+A collisions, as a function of system size and energy

NA61/SHINE programme:

- 1. Strong interactions
- Study particle spectra
- Study properties of the onset of deconfinement
- Search for the critical point (CP)
- Charm physics
- 2. Cosmic rays & neutrinos

"fluctuation hill"

NA61/SHINE experiment

- Large acceptance hadron spectrometer coverage of the full forward hemisphere, down to $p_T=0~{\rm GeV}/c$
 - Performs measurements on hadron production in h+p, h+A, A+A at 13A 150(8)A GeV/c
- Event selection in A+A collisions by measurements of forward energy with PSD
- Recent upgrades:
 - Vertex detector (open charm measurements)
 - FTPC-1/2/3

NA61/SHINE in virtual reality: http://shine3d.web.cern.ch/shine3d/

Onset of deconfinement

• Beginning of the creation of quark-gluon plasma (QGP) in nucleus-nucleus (A+A) collisions with increasing collision energy $\sqrt{s_{NN}}$.

Onset of deconfinement (energy dependence)

- Rapid changes in K⁺/ π ⁺ (HORN) observed in Pb+Pb collisions predicted by the Statistical Model of Early Stage (SMES) as a signature of the onset of deconfinement
- "Shadow" of HORN seen for p+p interactions
- Be+Be close to p+p
- $<K^+>/<\pi^+>$ in Ar+Sc between p+p/Be+Be and Pb+Pb

Onset of deconfinement (energy dependence)

- Changes in T (STEP-like structure), observed in Pb+Pb collisions predicted by SMES model as a signature of the onset of deconfinement
- "Shadow" of STEP seen for p+p interactions
- Be+Be close to p+p

Onset of fireball

Beginning of the creation of large clusters of strongly interacting matter (SIM)
in nucleus-nucleus collisions with increasing mass number A.

Onset of fireball (system size dependence)

- Rapid changes in K^+/π^+ and multiplicity fluctuations when moving from light (p+p, central Be+Be) to intermediate and heavy systems (central Pb+Pb)
- Heavy systems closer to predictions of statistical models for large volumes
 - → beginning of the creation of large clusters of strongly interacting matter

in intermediate systems - onset of fireball?

Onset of fireball (system size/cluster volume dependence)

Onset of deconfinement vs onset of fireball

10

• 2D scan conducted by varing collision energy and system size indicated

two thresholds:

- Onset of deconfinement
- Onset of fireball

→ four domains of hadron production

Critical point and critical fluctuations

Event-by-event fluctuation measures:

 ω[h-]: intensive (independent on system volume, dependent on its fluctuations, sensitive to material conservation laws)

ω[h-]: different energy dependence for p+p/Be+Be (increase) and Ar+Sc (constant)

• $\Sigma[P_{\tau}, N]$: **strongly intensive** (independent on system volume and its fluctuations, insensitive to material conservation laws $\Sigma[P_{\tau}, N] = (\langle N \rangle \omega[P_{\tau}] + \langle P_{\tau} \rangle \omega[N] - 2\text{cov}(P_{\tau}, N)) \frac{1}{\langle N \rangle \omega[p_{\tau}]}$

 $P_{\tau} = \sum_{i}^{N} p_{\tau i}$; $\omega[p_{\tau}]$ - for inclusive p_{τ} distribution

NA61/SHINE preliminary

11

Critical point and critical fluctuations

Intermittency analysis of 2-nd factorial moments

- $F_2(M)$: second factorial moment for M^2 cells in transverse momentum space / $\frac{M^2}{2}$
 - Momentum space $F_2(M) = \frac{\left\langle \frac{1}{M^2} \sum_{m=1}^{M^2} n_m (n_m-1) \right\rangle}{\left\langle \frac{1}{M^2} \sum_{m=1}^{M^2} n_m \right\rangle^2}$ N. G. Antoniou et al., Phys. Rev. Lett. 97, 032002 (2006)
- $\Delta F_2(M) = F_2^{\text{data}}(M) F_2^{\text{mix}}(M)$: correlator after subtraction of non-critical background moments
- $\Delta F_2(M) \sim (M^2)^{\varphi_2}$, $\varphi_2 = 5/6$ (protons): critical fluctuations

T. Anticic et al., Eur. Phys. J. C75, 587 (2006)

Open charm measurements

Motivation:

• What is the mechanism of open charm production?

SD Spulk Bratkovakova (

Linnyk, Bratkovskaya, Cassing, IJMP E17 1367

pQCD

Gavai et al. IJMP A 10 2999 Braun-Munzinger, J. Stachel, PLB 490, 196

HRG, Quark Coalesc. Stat.

Gavai et al. IJMP A10 2999

Braun-Munzinger, J. Stachel, PLB 490, 196

Quark Coalesc. Dyn.

Levai, Biro, Csizmadia, Csorgo, Zimanyi, JP G27, 703

SMES

Gazdzicki, Gorenstein, APP B30, 2705

- Model predictions differ by a factor up to 50 for central Pb+Pb collisions at top SPS energy
- Production in full phase space required to discriminate models

How does the onset of deconfinement impact charm production ?

- Different charm carriers in deconfined (c quarks) and confined (D mesons) matter
- Enhancement of (cc) production predicted by the SMES
- Mesurement of both J/ψ and ⟨c̄c⟩ required to calculate probability of ⟨c̄c⟩ to J/ψ hadronization
- How does the formation of quark-gluon plasma impact J/ψ production?

Open charm measurements

→ Vertex Detector project of the NA61/SHINE experiment

First observation of D⁰ peak in Pb+Pb collisions at SPS energies

- The analysis of pilot data on Pb+Pb collisions at 150A Gev/c (low statistics 140k events) proved the measurement of D⁰ production by Small Acceptance Vertex Detector is possible
- Pb+Pb and Xe+La data with higher statistics are under analysis
- Detailed studies require Large Acceptance VD and high statistics data

Future plans (beyond 2020)

Measurement plans:

- precise open charm studies in Pb+Pb collisions at 150A and 40A GeV/c
 with Large Acceptance Vertex Detector
- reference measurements of nuclear fragmentation cross-section for cosmic ray experiments (DAMPE, PAMELA, CALET, GAPS) to decrease uncertainties from 20% to 0.5%
- reference measurements of hadron production for neutrino experiments (T2K-II, Hyper-Kamiokande) to decrease systematical uncertainty for neutrino flux from 10% to 3-4%

NA61/SHINE detector upgrade:

- construction of Large Acceptance Vertex Detector for D⁰, anti-D⁰ decay reconstruction
- new trigger and data acquisition system
- replacement of the TPC readout electronics to increase data rate to 1 kHz
- upgrade of Projectile Spectator Detector
- new Time-of-Flight detectors

Summary

- Changes in hadron production as a function of energy (HORN, STEP) observed in central Pb+Pb collisions (NA49) as signatures of deconfinement
- Shadow of HORN observed in p+p/Be+Be
- STEP structure also observed in light nuclei collisions p+p/Be+Be
- Dependence of particle yeald ratios and multiplicity fluctuations on the system size suggests existence of the onset of fireball the beginning of creation of large clusters
- Four domains of hadron production with two thresholds
- No fluctuation signal attributed to the critical point
- The increase of fluctuations in Si+Si collisions (NA49) from intermittency analysis
- First observation of D⁰ peak in central Pb+Pb collisions at SPS energies
- New NA61/SHINE results for Ar+Sc, Xe+La and Pb+Pb collisions expected soon
- Ambitious programme of measurements beyond 2020

Thank you for your attention!

- Azerbaijan
 - National Nuclear Research Center, Baku
- Bulgaria
 - University of Sofia, Sofia
- Croatia
 - IRB, Zagreb
- France
 - LPNHE, Paris
- Germany
 - KIT, Karlsruhe
 - Fachhochschule Frankfurt, Frankfurt
 - University of Frankfurt, Frankfurt
- Greece
 - University of Athens, Athens
- Hungary
 - ► Wigner RCP, Budapest

- Japan
 - KEK Tsukuba, Tsukuba
- Norway
 - University of Bergen, Bergen
- Poland
 - UJK, Kielce
 - NCBJ, Warsaw
 - University of Warsaw, Warsaw
 - WUT, Warsaw
 - Jagiellonian University, Kraków
 - Jagiellonian Unive
 IFJ PAN, Kraków
 - AGH, Kraków
 - University of Silesia, Katowice
 - University of Wrocław, Wrocław
- Russia
 - INR Moscow, Moscov
 - JINR Dubna, Dubna
 - SPBU, St.Petersburg
 - MEPhl, Moscow

~150 physicists from ~30 institutes

- Serbia
 - University of Belgrade, Belgrade
- Switzerland
 - ETH Zürich, Zürich
 - University of Bern, Bern
 - University of Geneva, Geneva
- USA
 - University of Colorado Boulder, Boulder
 - LANL. Los Alamos
 - University of Pittsburgh, Pittsburgh
 - FNAL. Batavia
 - University of Hawaii, Manoa

