

Investigating jet modification in heavy-ion collisions at $\sqrt{s_{NN}} = 5.02$ and 2.76 TeV with ALICE

Hiroki Yokoyama for the ALICE Collaboration

University of Tsukuba, Japan

ICHEP 2018, Seoul, South Korea 7 July 2018

Quark-Gluon Plasma

<u> Quark-Gluon Plasma (QGP)</u>

- Hot & dense QCD matter
 - Similar to early Universe ~1µs old
- Deconfined state of quarks and gluons
- Theoretically inferred through lattice gauge simulations of QCD

☑ <u>Ultra-Relativistic Heavy Ion Collision</u>

High-energy nucleus-nucleus collisions at particle accelerators (RHIC, LHC)

Hiroki Yokoyama for the ALICE collaboration

ICHEP2018 SEOUL (07/07/2018)

Jet as Hard Probes of the QGP

Jet Quenching

- ✓ Partons' energy loss in the QGP
 - Energy attenuation/disappearance or shape modification of observed Jets
 - Evaluation of these modifications allows to assess QGP properties
 - 1. <u>Auto-generated probes</u>
 - ▶ short QGP lifetime (~10⁻²³ s)
 - 2. Probe the entire medium evolution
 - occur at early stage : τ ~ 1/Q
 - 3. <u>Well calibrated probes</u>
 - production rate calculable within pQCD
 - 4. Copious production at the LHC
 - 5. Access to initial parton kinematics
 - via jet reconstruction

Hiroki Yokoyama for the ALICE collaboration

Jet Measurement in LHC-ALICE

Charged Particles : $|\eta| < 0.9, 0 < \phi < 2\pi$

- $\ensuremath{\underline{\mathsf{MS}}}$: Silicon tracking detector
- ☑ <u>TPC</u> : Time projection chamber

 \Rightarrow "Charged" Jet

Electromagnetic particles : $|\eta| < 0.7$

- ☑ **EMCAL**, (**DCAL** : Run 2 from 2015-)
 - Pb-Scintillator sampling calorimeter

፼ <u>PHOS</u>

Lead-tungsten crystal (PWO) based calorimeter

⇒ Charged+EM = "Full" Jet

Main Physics Observables

Nuclear Modification Factor : RAA

- Evaluate the jet suppression as compared to pp
- *⊠ R*_{AA} < 1
 - Jet (parton) energy loss due to parton interaction with the medium
 - Out-of-cone energy radiation

$$R_{\rm AA} = \frac{dN^{\rm AA}/dp_{\rm T}}{\langle N_{\rm coll} \rangle \, dN^{\rm pp}/dp_{\rm T}} = \frac{dN^{\rm AA}/dp_{\rm T}}{\langle T_{\rm AA} \rangle \, d\sigma^{\rm pp}/dp_{\rm T}}$$

Cross Section Ratio

- Sensitive to structure of jets
- ✓ Jet broadening/collimation

Jet Production in pp 5.02 TeV

Measured charged jet cross sections are well described by POWHEG+Pythia8 (NLO pQCD + parton shower, hadronization)

- for cross section and cross section ratio
- ☑ POWHEG+Pythia8 viable reference for Pb-Pb measurements where lack of pp data

 $50 ext{ 60} p_{ au}^{ ext{jet,ch}} (ext{GeV}/c)$

40

Inclusive Jet R_{pA} at 5.02 TeV

- ☑ Is there jet quenching in p-Pb?
- ☑ Charged jet R_{pA} in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV
- $\ensuremath{\boxtimes} R_{\text{pA}}$ is consistent with unity.
 - Jet production in p-Pb is well described by binary scaling of pp
 - No modification within uncertainties

Jet Radial Structure in p-Pb 5.02 TeV

- ☑ Jet cross section ratio between different resolution parameters
 - ⊳ σ(R=0.2) / σ(R=0.4)
- ☑ No indication of nuclear modification in jet radial profile
- ☑ ΔE < 0.4 GeV/c medium-induced energy transport out of R = 0.4 cone. (arXiv:1712.05603)

Inclusive Jet *R*_{AA} at 5.02 TeV

- ☑ Charged and Full Jet R_{AA} in the most central Pb-Pb collisions
- $\ensuremath{\boxtimes} R_{AA}$ is smaller than unity
 - Strong jet suppression
 - ▶ Increase gently in low-p_T and reach a constant value
- ☑ No significant difference between Full and Charged jet R_{AA}

Inclusive Jet *R*_{AA} at **5.02 TeV**

- $\ensuremath{\overline{\mathsf{M}}}$ Charged jet R_{AA} in four centrality classes
- $\ensuremath{\overline{O}}$ Larger R_{AA} (smaller suppression) in the peripheral collisions, due to smaller system size.
- \blacksquare Jet R_{AA} for different resolution parameter are consistent within systematic errors

Jet radial structure is similar to pp?

Jet Radial Structure in Pb-Pb 5.02 TeV

- Interval of the section of the se
 - ⊳ σ(R=0.2) / σ(R=0.3)
- Consistent to POWHEG+Pythia8 and JEWEL expectation within uncertainties
 - The angular structure of jet core is unmodified in AA as compared to pp.

More precision needed to conclude

Hiroki Yokoyama for the ALICE collaboration

ICHEP2018 SEOUL (07/07/2018)

Hiroki Yokoyama for the ALICE collaboration

ICHEP2018 SEOUL (07/07/2018)

Introduction of Another Angle : Heavy-Flavor in Jets

- ☑ Charged Jet containing D⁰ in its constituent
 - Suppression of charm quarks
 - Robust against combinatorial background
 - * Enable to extend jet p_T down to few GeV/c
- Strong D-tagged jet suppression in the most central Pb-Pb collisions
- Investigation of type/mass dependent parton energy loss mechanism is expected
 - Charm and beauty jets
 - Motivation for upcoming Run 3, 4 with more data/precision

see A.Rossi talk (Heavy Ion 1, Jul. 5th)

Summary and Prospects

■ ALICE successfully measured charged and full jet in *pp*, *p*-Pb and Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV for jet resolution parameters of *R*=0.2 and 0.3

☑ Nuclear modification factor (*R*_{pA}, *R*_{AA})

- No jet suppression in *p*-Pb collisions
- Strong jet suppression in the most central Pb-Pb collisions
 - * Support significant jet energy loss via parton-medium interactions

 \blacksquare Jet cross section ratio between different R

- Jet angular structure is consistent to pp within uncertainties at the moment
- More precision needed
 - * Extend the range: larger R and/or jet- p_T reach

Study of parton type dependent jet modification is starting

- Strong suppression of D-tagged jet
- Detail and/or extended study of heavy-flavor jets expected at Run3, 4

Thank you for your attention!

inclusive ch. Jet

Challenge in Heavy-Ion Collisions

- ✓ Large background contribution to jet energy ▷ $dN_{ch}/d\eta \sim 1300$ (0-10% centrality)
- ☑ Average Background Density : *ρ*
 - ▶ k_T clusters excluding two leading clusters

 $\rho = \operatorname{median}\left(\frac{p_{\mathrm{T},i}}{A_i}\right)$

- event-by-event calculation
- ⊳ *ρ* ~ 145 *GeV*/c for 0-10%
- (~18 GeV/c for R=0.2 jets)
- ☑ Combinatorial Jets Removal
 - random combination of BKG particles
 - minimum leading constituent p_T^{lead} > 5 GeV/c is required

Underlying Event Fluctuation

- * Background fluctuation : δpT
 - from region to region around average background
 - Random Cone method
 - * (exclude leading jet neighbour : $\Delta r > 1.0$) $\delta p_{\rm T} = \sum_{i}^{RC} p_{{\rm T},i}^{{\rm track}} - \rho \pi R^2$

- * δp_T width (magnitude of fluctuation)
 - * ~ 5 GeV/c (0-10% , R=0.2)
 - * smaller in peripheral

inclusive ch. Jet

Jet Energy Resolution

- * Jet energy resolution is derived by the Response Matrixes
- Effect from Underlying Event Fluctuation
 - dominant in lower jet pT
- * Detector Effect
 - dominant at higher jet pT

Jet Reconstruction Algorithm

FastJet anti-k_T algorithm (p=-1, p=1 for k_T algorithm)

- ▷ calculate d_{ij} and d_{iB} by all particles combination
 - * when minimum "d" among them is part of d_{ij}
 - * merge particle "i" and "j"
 - \ast when minimum "d" among them is part of d_{iB}
 - * that cluster defined as jet
- repeat until no particle are left

$$d_{ij} = \min(k_{ti}^{2p}, k_{tj}^{2p}) \frac{\Delta_{ij}^2}{R^2}, d_{iB} = k_{ti}^{2p},$$

$$\Delta_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

Jet Reconstruction

- ☑ Combine/classify particles into clusters sequentially
 - ▶ based on p_T weighted distance
 - I correspondence between parton level and detector level).

☑ Anti-k_T algorithm

- ▶ start clustering from high- p_T particles \Rightarrow Signal Jet in Heavy Ion collisions
- Circular and centred around harder energy deposit (with radius ~R)

▶ start clustering from low- p_T particles \Rightarrow Estimation of Soft BKG

pp Inclusive Jet Cross Section

rac{M}{}Jet cross section at \sqrt{s} = 5.02 TeV pp collisions in 2015

POWHEG NLO calculations well describes measured spectrum within systematic uncertainties

Dataset

- ▷ √s = 5.02 TeV, pp collisions
- MB triggered events (25.5M events)

Charged track selection

▷ $|\eta| < 0.9$, $p_T^{track} > 0.15$ GeV/c

Jet reconstruction

- anti-kt jet reconstruction algorithm
- ▶ R = 0.2
- $\triangleright \mid \eta \mid$ < 0.7, (p_{T}^{lead} > 5 GeV/c for R_{AA} ref.)

Unfolding

▹ to correct for detector effects

Pb-Pb Inclusive Charged Jet Cross Section

☑ Jet cross section at √sNN = 5.02 TeV PbPb collisions in 2015

ALI-PREL-156109

Pb-Pb Inclusive Full Jet Cross Section

☑ Jet cross section at √sNN = 5.02 TeV PbPb collisions in 2015

Dataset

- ▷ √s = 5.02 TeV, PbPb collisions
 - *MB triggered events (4.5M events)
 - *0-10% centrality

Charged track selection

▷ $|\eta| < 0.9, p_T^{track} > 0.15 \text{ GeV/c}$

Method Employed Employed EM cluster selection

 \triangleright E_{clus} > 0.3 GeV

Jet reconstruction

anti-kt jet reconstruction algorithm

