Probing the charm hadronisation with ALICE at the LHC

Friday 6 July 2018 11:30 (15 minutes)

Charm-quark hadronisation can be investigated by measuring the relative abundance of various particle species, in particular non-strange D mesons (D⁰, D⁺, D^{*+}), D⁺_s mesons, and charm baryons (^+_c , 0_c). The high precision tracking, good vertexing capabilities and excellent particle identification granted by the ALICE apparatus allows measuring hadrons containing charm quarks over a wide momentum range in pp and pA collisions. Measurements of the charmed-baryon production in small systems are also a fundamental reference for heavy-ion collisions, where an enhancement of the baryon-to-meson ratio could derive from hadronisation via coalescence of charm quarks with the quarks of the Quark-Gluon Plasma formed in these collisions. \parallel

In this talk, recent measurements of charmed meson and baryon production in pp collisions and in p-Pb collisions with the ALICE experiment are presented and compared with theoretical calculations. The results include the $p_{\rm T}$ -differential cross section of $^+_{\rm c}$ and $^0_{\rm c}$ baryons, and the $^+_{\rm c}/{\rm D}^0$ ratio. The measured values of $^+_{\rm c}/{\rm D}^0$ baryon-to-meson ratio are significantly higher than what expected from model expectations and previous measurements at e^+e^- and e-p colliders.

Author: BEDDA, Cristina (Utrecht University (NL))

Presenter: BEDDA, Cristina (Utrecht University (NL))

Session Classification: Strong Interactions and Hadron Physics

Track Classification: Strong Interactions and Hadron Physics