

Open heavy-flavour measurements in proton-proton collisions with ALICE at the LHC

Julien Hamon¹, Andrea Rossi², for the ALICE Collaboration

1. University of Strasbourg

2. University of Padua

5 July 2018 "Strong interactions and hadron physics"

Julien.Hamon@cern.ch

Heavy quarks in proton-proton collisions

Test for Quantum ChromoDynamics (QCD): perturbative processes $(m_{c,b} >> \Lambda_{QCD})$

Charm ~ 1.3 GeV/ c^2 Beauty ~ 4.2 GeV/ c^2

Factorisation theorem:

$$\sigma_{\mathrm{M}+\mathrm{N}\to\mathrm{H}+\mathrm{X}} = f_i^{\mathrm{M}}(x_m, Q^2) f_j^{\mathrm{N}}(x_n, Q^2) \otimes \sigma_{m,n\to p}(x_m, x_n, Q^2) \otimes D_{p\to H}(z_{H/p}, Q^2)$$

Parton distribution function (PDF)Partonic hard scattering (pQCD)Fragmentation function (FF)FONLL:JHEP 10 (2012) 137 and references thereinGM-VFNS: Eur. Phys. J. C72 (2012) 2082

- Production cross section of heavy-flavour hadrons down to $p_T \sim 0 \text{ GeV}/c$
- Production ratios between various energies and rapidity regions
 - \rightarrow gluon distribution functions Cacciari et al.: Eur. Phys. J. C75 (2015) 610
- Production ratios of hadron species → charm hadronisation see also C. Bedda's talk (Friday)

Interplay between soft/hard processes:

- Production cross sections as a function of the **particle multiplicity of the collision**
- Role of multi-parton interactions (MPI)

Charm jets & fragmentation properties:

- D-meson-tagged jets
- D-meson azimuthal **correlations** with hadrons

A Large Ion Collider Experiment

$D^0(\mathbf{c}\overline{u}) \longrightarrow K^-\pi^+$	1865 MeV/ <i>c</i> ²	3.93 ± 0.04 %
$D^+(\mathbf{c}\vec{d}) \longrightarrow K^-\pi^+\pi^+$	1869 MeV/ <i>c</i> ²	9.46 ± 0.24 %
$D_{s}^{+}(\mathbf{c}\overline{s}) \longrightarrow (\phi \longrightarrow K^{+}K^{-})\pi^{+}$	1968 MeV/ <i>c</i> ²	$2.27 \pm 0.08 \%$
$D^{*+}(\mathbf{c}d) \rightarrow D^{0}\pi^{+}$	2010 MeV/ <i>c</i> ²	67.7 ± 0.5 %
$\Lambda_{c}^{+}(\mathbf{c}ud) \rightarrow \mathbf{p}K^{-}\pi^{+}, \mathbf{p}K_{S}^{0}$	2286 MeV/ <i>c</i> ²	$6.23 \pm 0.33 \%$, $1.58 \pm 0.08 \%$
$\Xi_c^0(\mathbf{c}ds) \rightarrow \mathbf{e} + \Xi^- \mathbf{v}_e$	2470 MeV/c ²	_

Open-charm hadrons studied in ALICE:

- Decay muons: D, Λ_c , B,... $\rightarrow \mu$ + X in -4 < η < -2.5
- Decay electrons: D, Λ_c , B,... \rightarrow e + X in $|\eta| < 0.9$
- Exclusive reconstruction of charmed hadron hadronic decays channels (π^{\pm} , K^{\pm} , **p**) in |y| < 0.5

D-meson production cross section

ALI-PREL-151360

pQCD models at LHC energies:

D meson cross sections well described by pQCD-based models at all LHC energies

- pQCD calculations (FONLL) over a wide p_T range and down to $p_T \sim 0$ GeV/c
- Data uncertainties are smaller than uncertainties in pQCD calculations

D-meson productions – *species*, *rapidity* and *energy* dependence – further constrain calculations

• D-meson species dependence:

 \rightarrow Mainly depend only on branching fractions and fragmentation functions

d $\sigma/d
ho_{T}$ central / forward

6

Eur.Phys.J. C77 (2017) 8, 550

 $\sqrt{s} = 7 \text{ TeV}$

central: ALICE |y|<0.5

forward: LHCb 3<y<3.5

D-meson productions – *species*, *rapidity* and *energy* dependence – further constrain calculations

- D-meson species dependence:
 - \rightarrow Mainly depend only on branching fractions and fragmentation functions
- D-meson energies and rapidity dependence:
 - \rightarrow Double \sqrt{s} and y ratio: independence of renormalisation/factorisation scales, branching ratios,
 - \rightarrow sensitivity to gluon PDF down to $x_B \sim 10^{-4}$ when $p_T(D) \sim 0$ GeV/c

Charm jet tagged by the presence of a D⁰ meson

among the jet constituents

Good agreement of data with POWHEG + PYTHIA6 predictions

(NLO generator) + (parton shower +

(parton shower + hadronization)

• Kinematics reach and precision can be **extended** with the \sqrt{s} = 5.02 and 13 TeV datasets

Good agreement of data with POWHEG + PYTHIA6 predictions (NLO generator) + (parton shower + hadronization)

• Kinematics reach and precision can be **extended** with the \sqrt{s} = 5.02 and 13 TeV datasets

• Kinematics reach and precision can be **extended** with the \sqrt{s} = 5.02 and 13 TeV datasets

Azimuthal correlations of D mesons with charged particles

Heavy flavour versus charged-particle multiplicity

Self-normalised yield of **heavy flavour** versus **multiplicity**:

- $\mu \leftarrow c, b$ at forward rapidity (2.5 < *y* < 4)
- **e** \leftarrow **c**, **b** at central rapidity (|y| < 0.8)

Faster than linear increasing trend with multiplicity:

• Hint of steeper increase for **higher** p_{T} intervals

Heavy flavour versus charged-particle multiplicity

Self-normalised yield of heavy flavour versus multiplicity:

- $\mu \leftarrow c, b$ at forward rapidity (2.5 < y < 4)
- e \leftarrow c, b at central rapidity (|y| < 0.8)

Faster than linear increasing trend with multiplicity:

- Hint of steeper increase for **higher** *p*_T intervals
- Similar results for $\mathbf{e} \leftarrow \mathbf{c}, \mathbf{b}$ and (inclusive) $\mathbf{J}/\Psi \leftarrow \mathbf{c}, \mathbf{b}$
- Different trend of $\mu \leftarrow c, b$ (forward y, $\sqrt{s} = 8 TeV$) with respect to $\mathbf{e} \leftarrow \mathbf{c}, \mathbf{b}$ (central y, $\sqrt{s} = 13$ TeV) at low multiplicity
 - \rightarrow Possibly smaller jet bias and autocorrelation effects for the $\mu \leftarrow c$, b measurement at forward y

Heavy flavour versus charged-particle multiplicity

Data compared to EPOS 3.210 (including hydrodynamics) and PYTHIA8

- Fair agreement of **EPOS 3** at low multiplicities, deviation at high multiplicities
- **PYTHIA8** qualitatively reproduces the data at all multiplicities

Open heavy flavours (HF) in proton-proton collisions:

- Efficient tool to investigate the interplay between hard and soft QCD processes
- Various measurements at several LHC energies: $\sqrt{s} = 2.76, 5, 7, 8, 13 \text{ TeV}$

Prospects:

- Run 2: additional datasets need to be analysed \rightarrow better precision and more differential measurements
- Run 3: ALICE Upgrades will further improve the heavy-flavour hadron reconstruction
- Charmed baryons: heavy flavour measurements recently extended to Λ_c^+ and Ξ_c^+

Surprises with charm baryons \rightarrow C. Bedda's talk (Friday)

Extra slides

D-meson hadronic full reconstruction

~	$D^{0}(\mathbf{c}\overline{u}) \longrightarrow K^{-}\pi^{+} (3.93 \pm 0.04 \%)$	1864.8 MeV/ <i>c</i> ²	<i>cτ~</i> 123 μm
~	$D^+(\mathbf{c}\vec{d}) \longrightarrow K^-\pi^+\pi^+ (9.46 \pm 0.24 \%)$	1869.6 MeV/ c^2	<i>cτ~</i> 312 μm
~	$D_{s}^{+}(\mathbf{c}\overline{s}) \longrightarrow (\phi \longrightarrow K^{+}K^{-})\pi^{+} (2.27 \pm 0.08 \%)$	1968.3 MeV/ <i>c</i> ²	<i>cτ~</i> 150 μm
~	$D^{*+}(\mathbf{c}\vec{d}) \longrightarrow D^{0}\pi^{+} (67.7 \pm 0.5 \%)$	2010.3 MeV/ <i>c</i> ²	<i>cτ</i> ~2 fm

Analysis strategy:

- combination of track pairs/triplets with proper charge combinations and PID information
- secondary vertex <u>reconstruction</u>
- exploit the D-meson vertex <u>displacement</u> by applying kinematic and geometrical <u>selections</u>

Typical topological selections: to be optimised per p_T interval

- D-meson decay length: L_{xy}
- D-meson pointing angle: $\cos(\theta_{\text{pointing}})$
- Impact parameter of daughters: *d*₀

Eur.Phys.J. C77 (2017) 8, 550

 $\sqrt{s} = 7 \text{ TeV}$

D-meson production cross section

- Fixed-Order-Next-to-Leading-Log (FONLL): JHEP 10 (2012) 137 and references therein
- General Mass Variable Flavour Number Scheme (GM-VFNS): Eur. Phys. J. C72 (2012) 2082
- *k*_T factorisation: Phys. Rev. D87 (2013) 094022
- **POWHEG + PYTHIA6:** JHEP 0711 (2007) 070 + JHEP 05 (2006) 026

$\sqrt{s} = 7 \text{ TeV}$

Measurements down to low p_T

Different analysis method allows us to measure D^0 down to $p_T = 0$

- no selection on secondary vertex, only combinatorics
- estimation + subtraction of the background (event mixing, rotational, ...)

pQCD calculations (FONLL) are compatible within uncertainties with the data for all D-meson species.

FONLL: JHEP 10 (2012) 137

Total charm cross-section estimated by extrapolating D⁰ measurement to full solid angle

Data in agreement with QCD predictions at NLO, within large uncertainties, over a wide \sqrt{s} range

NLO MNR: Nucl. Phys. B373 (1992) 295-345

+ cc̄ cross section is a basic ingredient for studying charmonium (re)generation in Pb-Pb collisions

- D-jet raw spectrum extracted from invariant mass analysis
- Correction for D-jet efficiency and beauty feed-down
- Corrected jet-p_T spectra unfolded for detector effects

- Similar trend for non-prompt $(B \rightarrow) J/\Psi$ yields
- Similar trend for **prompt J**/ Ψ yields

<u>Caveat</u>: different η and p_T regions

Interpretation:

- No strong *flavour* dependence
- Enhancement may be related to *cc and bb production processes*, potentially not strongly influenced by hadronisation

 $(d^2 N/dy dp_T) / \langle d^2 N/dy dp_T \rangle$

25

20

JHEP 09 (2015) 148

ALICE, pp $\sqrt{s} = 7 \text{ TeV}$

Average D^0 , D^+ , D^{*+} meson, |y| < 0.5

 $< p_{T} < 2 \text{ GeV/}c$ $< p_{T} < 4 \text{ GeV/}c$ $< p_{T} < 8 \text{ GeV/}c$

 $8 < p_{T}' < 12 \text{ GeV/}c$ $12 < p_{T} < 20 \text{ GeV/}c$

JHEP 09 (2015) 148

Percolation model:

- Color sources with finite spatial extension (~mimic MPI)
- Steeper-than-linear increase

EPOS 3.099 + Hydrodynamic evolution:

- Gribov-Regge formalism
- MPI linked to multiplicity: $N_{hard \ process} \propto N_{MPI} \propto N_{multiplicity}$
- Steeper-than-linear increase with hydrodynamic

PYTHIA8:

- Soft QCD with colour reconnections
- Initial and final state radiations
- MPI
- Almost linear increase