

Study of K_s^0 pair and $\eta_c(1S)$, $\eta_c(2S)$ and non-resonant $\eta'\pi\pi$ production in two-photon collisions at Belle

Qingnian Xu
On behalf of the Belle collaboration
IHEP & UCAS, Beijing

ICHEP 2018 4-11 July 2018, Seoul

1 2018/7/7

Motivation of single-tag two-photon process

Reaction:

$$e^+e^- \rightarrow e^{\pm}$$
 (undected e^{\mp}) hadrons

Study strong interaction in low energy region, where pQCD can't be applied;

- ▶ Measure Q²dependence of Transition Form Factor (TFF);
- Provide input for a data-driven estimate of the hadronic light-by-light contribution significant for the problem of muon g-2.

Motivation of no-tag two-photon process

- Lowest heavy-quakonium $\eta_c(1S)$, plus J/psi, $\eta_b(1S)$ and $\Upsilon(1S)$, as benchmarks for the fine tuning of input parameters in QCD calculation.
- Attempt to measure $\Gamma_{\gamma\gamma}$ for $\eta_c(2S)$ and to address the discrepancy between data and QCD predictions.

- Improved precision in both data and QCD predictions at higher W mass would provide more sensitive comparisons.
- pseudo-scalar meson pairs were measured by Belle [1] Charged-meson pairs: $\pi^+\pi^-$, K^+K^- . Neutral-meson pairs: $K^0_SK^0_S$, $\pi^0\pi^0$, $\eta\pi^0$, $\eta\eta$.
- > pseudo-scalar tensor pair $\eta' f_2(1270)$ and three-body final state $\eta' \pi \pi$ would provide new information to validate QCD models.

[1] Belle, Euro.Phys.Jour.C (2014) 74:3026

KEKB and Belle Detector

$$\gamma^* \gamma \rightarrow K_S^0 K_S^0$$

Dataset: 759 fb⁻¹

PRD 97, 052003 (2018)

No-tag results for $K_s^0 K_s^0$ process

PTEP 2013, 123C01 (2013)

Maximum at the $f_2'(1525)$ peak $f_2(1270)/a_2(1320)$ destructive interference Two-photon coupling of $f_0(1710)$

No data near the K⁰_SK⁰_S mass threshold

 χ_{cJ} Yield

Interference	$N_{\chi_{c0}}$	$N_{\chi_{c2}}$	$-2\ln\mathcal{L}/ndf$
not included	$248.3^{+17.9}_{-17.2}$	$53.0^{+8.1}_{-7.4}$	57.34/73
included	266 ± 53	53^{+14}_{-12}	57.22/71

Two-photon decay width \times B($K^0_S K^0_S$)

Interference	$\Gamma_{\gamma\gamma}\mathcal{B}(\chi_{c0})$	$\Gamma_{\gamma\gamma}\mathcal{B}(\chi_{c2})$
	(eV)	(eV)
not included	$8.09 \pm 0.58 \pm 0.83$	$0.268^{+0.041}_{-0.037} \pm 0.028$
included	$8.7 \pm 1.7 \pm 0.9$	$0.27^{+0.07}_{-0.06} \pm 0.03$
Belle 2007	$7.00 \pm 0.65 \pm 0.71$	$0.31 \pm 0.05 \pm 0.03$
PDG 2012	7.3 ± 0.5	0.297 ± 0.026

$$\gamma^* \gamma \rightarrow K_s^0 K_s^0$$

W dependence and $\gamma^* \gamma$ cross section at Q² bins

W distributions includes background

Threshold enhancement, may be associated with $f_0(980)/a_0(980)$.

$$\gamma^* \gamma \rightarrow K_s^0 K_s^0$$

Partial decay width of χ_{cl} mesons

Assume that in total 7 events (3 events) peaking near the χ_{c0} (χ_{c2}) mass are purely from the charmonium (backgrounds are estimated <1 event in total)

The first measurement of χ_{cJ} production in high-Q² single-tag two-photon collisions.

Solid curve: SBG [1] with the charmonium-mass scale (much favored).

Dashed curve: With the ρ -mass scale (VDM like)

[1] Schuler, Berends, and van Gulik, Nucl. Phys. B523, 423 (1998).

$$\gamma^* \gamma \rightarrow K_s^0 K_s^0$$

PWA results in W dependence at Q² bins

- Non-zero D_0 and D_1 components in the $f_2'(1525)$.
- No $f_2(1270)/a_2(1320)$ is seen.
- An enhancement near the threshold (0.995 GeV).

9

$\gamma^* \gamma \to K_s^0 K_s^0$

10

$f_2'(1525)$ TFF results

 Q^2 (GeV²)

The obtained helicity-0, -1, and -2 TFF of the $f_2'(1525)$ meson as a function of Q^2 .

Shorter error bars: statistical Longer error bars: statistical and systematic Shaded areas: overall systematic on $\Gamma_{\nu\nu}$.

—Schuler, Berends, van Glick (SBG) Nucl. Phys. B 523, 423, (1998).

helicity-0 and -2 agree well with SBG. helicity-1 -- slightly smaller, but not inconsistent.

2018/7/7

$$\gamma\gamma o \eta'\pi^+\pi^-$$

Dataset: 941 fb⁻¹

arXiv: 1805.03044

Submitted to PRD

$\gamma\gamma o \eta'\pi^+\pi^-$

Simultaneous Fit for $\eta_c(1s)$ and $\eta_c(2s)$

$$\gamma\gamma o \eta'\pi^+\pi^-$$

Discussion on $\Gamma_{\nu\nu}$ of $\eta_c(2S)$

Defining the ratio R = $\frac{\Gamma_{\gamma\gamma}(\eta_c(2S))B(\eta_c(2S))}{\Gamma_{\gamma\gamma}(\eta_c(1S))B(\eta_c(1S))}$, which is directly measured,

	This work	BaBar $(K\overline{K}\pi)$ [1]	CLEO[2]
R	$(8.6 \pm 2.6) \cdot 10^{-2}$	$(10.6 \pm 2.0) \cdot 10^{-2}$	$(18 \pm 5 \pm 2) \cdot 10^{-2}$
•			

Consistent

so, we have
$$R_B = \frac{B(\eta_c(2S) \to \eta \prime \pi \pi)}{B(\eta_c(1S) \to \eta \prime \pi \pi)} \cong \frac{B(\eta_c(2S) \to K\overline{K}\pi)}{B(\eta_c(1S) \to K\overline{K}\pi)}$$
 within error.

Assuming $R_B \cong 1$ and

- using the world average value $\Gamma_{\gamma\gamma}(\eta_c(1S)) = 5.1 \pm 0.4 \text{ keV}$, we obtain $\Gamma_{\gamma\gamma}(\eta_C(2S)) = 0.44 \pm 0.13$ keV for $\eta'\pi\pi$ (this) and 0.54 ± 0.11 keV for BaBar $(K\overline{K}\pi)$ [1]. by Belle and BaBar are lower than Both $\Gamma_{yy}(\eta_C(2S))$ values by Belle
 - - $0.92 \pm 0.28 \text{ keV from CLEO}$ [2]
 - QCD predictions for two-photon decay width of $\eta_c(2S)$ are ranged from 1.4 to 5.7.
- It is essential to have **precise measurement** of either $B(\eta_c(2S) \to K_s K\pi)$ or $B(B \rightarrow K \eta_c(2S))$
 - [1] del Amo Sanchez. P. et al. (BaBar Collaboration) Phys.Rev. D84 (2011) 012004.
 - [2] D. M. Asner *et al.* CLEO Collaboration, Phys. Rev.Lett. **92** (2004) 142001. 13
 - [3] T. Barnes, T. E. Browder, and S. F. Tuan, Phys. Lett. B 385, 391 (1996).
 - [4] J.P. Lansberg, T.N. Pham, AIP Conf. Proc. 1038 (2008) 259.

Discrepancy between data and QCD values

$$\gamma\gamma o \eta'\pi^+\pi^-$$

Study of $\eta_c(1S) \rightarrow \eta' f_0(2080)$ decay with $f_0(2080) \rightarrow \pi^+\pi^-$

Events / 45 MeV/c² $\eta_{a}(1S)\rightarrow \eta' f_{a}(980)$ $\eta^{\circ}(1S) \rightarrow \eta^{\circ} \pi^{-1} \text{two-body}$ 60 $\eta_{-}^{\circ}(1S) \rightarrow \eta_{-}^{\circ}(1270)$ $\eta^{\circ}(1S) \rightarrow \eta' f^{\circ}(2080)$ 20

 $M(\pi^{+}\pi^{-})[GeV/c^{2}]$ $M = 2083^{+63}_{-66} \pm 32 \text{ MeV}, \ \Gamma = 178^{+60}_{-178} \pm 55 \text{ MeV}$

1.5

Black dots and red circles for events selected in $\eta_c(1S)$ signal and sideband regions.

No enhanced structure is seen in the Dalitz distributions for the $\eta_c(1S) \rightarrow a_2^{\pm} \pi^{\mp}$ with $a_2^{\pm} \rightarrow \eta' \pi^{\pm}$

$$\gamma\gamma o \eta'\pi^+\pi^-$$

Result of $\sigma(\gamma\gamma \rightarrow \eta' f_2(1270))$

- Green dashed is the leading term QCD predictions for neutral meson pairs $\sim 1/W^{10}$ [1]
- No prediction for for $\gamma\gamma \rightarrow \eta' f_2(1270)$.
- Assuming $\sigma \sim 1/w^n$.
- The red solid line is the fitted value of $n = 5.1 \pm 1.0$ for $|\cos \theta^*| < 1$ and $n = 7.5 \pm 2.0$ for $|\cos \theta^*| < 0.6$.

[1] Ed. A.J. Bevan, B. Golob, Th. Mannel, S. Prell, and B.D. Yabsley, Euro. Phys. Jour. C (2014) 74:3026.

$$\gamma\gamma o \eta'\pi^+\pi^-$$

Result of $\sigma(\gamma\gamma \rightarrow \eta'\pi\pi)$

- (a). Structure near 1.8 GeV/ c^2 is contributed from X(1835) or $\eta(1760)$ [1].
- (b) Enhancement at 2.1GeV/c^2 is possible contribution from $\gamma\gamma \rightarrow I(2100) \rightarrow \eta' f_0(980)$.

[1]C.C. Zhang et al. Belle Collaboratin, Phys. Rev D86, 052002 (2012).

1

$$\gamma\gamma o \eta'\pi^+\pi^-$$

Cross Section in |cosθ*|

• Black dots with error bar are the $|\cos\theta^*|$ dependent cross sections in data

$$\gamma\gamma \rightarrow \eta' f_2(1270)$$

Red lines, normalized to the data, follows a $1/\sin^4\theta$ behavior.

Measured cross section after subtracting the $\gamma\gamma \rightarrow \eta' f_2(1270)$ contribution in W region above 2.26GeV. The distributions in data comparable with a uniform distribution (red lines).

Summary

Single-tag two-photon results

- Cross section for $\gamma^* \gamma \to K_s^0 K_s^0$ has been measured for $2M(K_s^0) < W < 2.6$ GeV, 3 GeV² $< Q^2 < 30$ GeV²
- \blacksquare Q² dependence of $\Gamma_{\gamma^*\gamma}$ of χ_{c0} and χ_{c2} has been measured.
- Q^2 dependence of $f'_2(1525)$ TFF has been measured.

No-tag two-photon results

- First observation of $\eta_C(2S) \rightarrow \eta' \pi \pi$ with a significance 5.5 σ including systematic error.
- First observation of $\eta_c(1S) \rightarrow \eta' f_0(2080)$ decay with $f_0(2080) \rightarrow \pi^+ \pi^-$ with a significance 20σ
- Measurements of pseudo-scalar tensor pair $\eta' f_2(1270)$ production, as well as that of $\eta' \pi \pi$, are made for the first time.

Thanks for your attention!

Backup

Partial Wave Analysis for TFF of f'_{2} (1525)

Applied for W<1.8 GeV. We take into account partial waves up to

J=1 does not couple with $K_S^0K_S^0 (\rightarrow J^P = 0^+ \text{ and } 2^+)$

PRD 97, 052003 (2018)

Resonance amplitude for
$$f'_2$$
, etc.

$$A_R^J(W) = F_R(Q^2) \sqrt{1 + \frac{Q^2}{m_R^2}} \sqrt{\frac{8\pi (2J+1)m_R}{W}}$$
$$\times \frac{\sqrt{\Gamma_{\text{tot}}(W)\Gamma_{\gamma\gamma}(W)\mathcal{B}(K_S^0 K_S^0)}}{m_R^2 - W^2 - im_R\Gamma_{\text{tot}}(W)}$$

$$t_0 = |SY_0^0 + D_0 Y_2^0|^2 + |D_2 Y_2^2|^2 + 2\epsilon_0 |D_1 Y_2^1|^2,$$

$$t_1 = 2\epsilon_1 \Re \left[(D_2^* |Y_2^2| - S^* Y_0^0 - D_0^* Y_2^0) D_1 |Y_2^1| \right],$$

$$t_2 = -2\epsilon_0 \Re \left[D_2^* |Y_2^2| (SY_0^0 + D_0 Y_2^0) \right].$$

TFF of f', for helicity $i = \lambda$

$$\sqrt{r_{ifp}} F_{f2p} (i = 0, 1, 2)$$
$$r_{0fp} + r_{1fp} + r_{2fp} = 1$$

 S, D_0 , etc. --- Partial-wave amplitudes --- Spin-dependent flux factor ratios for the virtual photon Y_i^m --- Spherical harmonics

Formalism of PWA and parametrizations

Problems: Low statistics

Only 3 out of S, D_0 , D_1 and D_2 are independent Non-unique solution (multiple solutions for resonances)

→ Parametrization of the amplitudes with modelled W and Q² dependences

$$S = A_{BW}e^{i\phi_{BW}} + B_{S}e^{i\phi_{BS}},$$

$$D_{i} = \sqrt{r_{ifa}(Q^{2})(A_{f_{2}(1270)} - A_{a_{2}(1320)})}e^{i\phi_{faDi}}$$

$$+\sqrt{r_{ifp}(Q^{2})}A_{f'_{2}(1525)}e^{i\phi_{fpDi}}$$

$$+B_{Di}e^{i\phi_{BDi}},$$

$$A_{BW}(W) = \sqrt{\frac{8\pi m_S}{W}} \frac{f_S}{m_S^2 - W^2 - im_S g_S} \times \frac{1}{(Q^2/m_0^2 + 1)^{p_S}},$$

Nominal fit Bs = 0

$$B_{S} = \frac{\beta a_{S} (W_{0}/W)^{b_{S}}}{(Q^{2}/m_{0}^{2}+1)^{c_{S}}},$$

$$B_{D0} = \frac{\beta^{5} a_{D0} (W_{0}/W)^{b_{D0}}}{(Q^{2}/m_{0}^{2}+1)^{c_{D0}}},$$

$$B_{D1} = \frac{\beta^{5} Q^{2} a_{D1} (W_{0}/W)^{b_{D1}}}{(Q^{2}/m_{0}^{2}+1)^{c_{D1}}},$$

$$B_{D2} = \frac{\beta^{5} a_{D2} (W_{0}/W)^{b_{D2}}}{(Q^{2}/m_{0}^{2}+1)^{c_{D2}}},$$

$$\beta = \sqrt{1 - 4m_{K_{0}}^{2}/W^{2}} \text{ is the } K_{S}^{0} \text{ velocity}$$

$$r_{0fp}: r_{1fp}: r_{2fp} = k_0 Q^2: k_1 \sqrt{Q^2}: 1$$

-Destructive interference between $f_2(1270)$ and $a_2(1320)$ - $r_i(Q^2)$ and TFF for $f_2(1270)$ and $a_2(1320)$ are the same; use the values obtained in single-tag $\pi^0\pi^0$

Determine each component and the relative phase by a fit

Angular dependence and the PWA fit

Due to a lack of statistics, we use Q²-integrated angular differential cross section derived with the following convention (MC generated isotropically)

$$d^{2}\sigma/d|\cos\theta^{*}|d|\varphi^{*}| \propto N_{\rm EXP}(|\cos\theta^{*}|, |\varphi^{*}|)/N_{\rm MC}(|\cos\theta^{*}|, |\varphi^{*}|)$$

Q²: integrated over the full range between 3 and 30 GeV²

W: 4 bins

The fit is applied to the two-dimensional angular-dependence data.

Forward enhancement is from the helicity-0 component.

From PDG 2017

	Branching fraction
$\eta_c(1S) \rightarrow K\overline{K}\pi$	$(7.3 \pm 0.5)\%$
$\eta_c(2S) \rightarrow K\overline{K}\pi$	$(1.9 \pm 1.2)\%$
$B \rightarrow K(\eta_c(1S) \rightarrow K_S K \pi)$	$(2.7 \pm 0.6) \times 10^{-5}$
$B \rightarrow K(\eta_c(2S) \rightarrow K_s K\pi)$	$(3.4^{+2.3}_{-16}) \times 10^{-6}$

Possible intermediate from $\gamma\gamma \rightarrow I(2100) \rightarrow \eta' f_0(980)$

- In $f_0(980)$ signal region $0.86 < M(\pi\pi) < 1.10 \text{ GeV/c}^2$
- I(2100) with statistic significance 3.5σ .