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Deep-inelastic scattering
Neutral current deep-inelastic scattering

Process:    ep → e'X
Electron or positron

Kinematic variables
Virtuality of exchanged boson Q2

Inelasticity

NC and CC DIS cross sections (HERA-II) are mandatory ingredients for PDF 
fits
● Only one proton involved 

-> lepton directly probes (charged) constitutents of proton

Gluon is mainly indirectly constrained by DGLAP and sum-rules
-> Measurement of ep -> 2j+X will allow direct access of gluon content
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e(k)
e'(k')

p(p)

y=
p⋅q
p⋅k

γ/Z(q)

X



3Daniel Britzger – H1 JetsICHEP2018, Seoul, Korea

Jet production in ep scattering

Jet measurements are performed in Breit reference frame
● Exchanged virtual boson collides 'head-on' with parton from proton ('brick-wall' 

frame)

Jet measurements directly sensitive 
● to αs already at leading-order
● to gluon content of proton

Trijet measurement
● More than three jets with significant transverse momenta
● Leading-order already at O(αs

2)

Boson-gluon fusion QCD Compton Trijet leading-order

Breit frame
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The HERA ep collider

HERA ep collider in Hamburg
● Data taking periods

● HERA I: 1994 – 2000 
● HERA II:  2003 – 2007

● Delivered integrated luminosity ~ 0.5 fb-1

HERA-II period
● Electron and positron runs
● √s = 319 GeV

● Ee = 27.6 GeV
● Ep = 920 GeV

● Analysed int. Luminosity: L = 290 pb-1

HERA ep collider Integrated luminosity

H1
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H1 Experiment at HERA
H1 multi-purpose detector

Asymmetric design
Trackers 

● Silicon tracker
● Jet chambers
● Proportional chambers

Calorimeters
● Liquid Argon sampling calorimeter
● SpaCal: scintillating fiber calorimeter

Superconducting solenoid, 1.15T
Muon detectors

Excellent control over experimental uncertainties
● Overconstrained system in NC DIS
● Electron measurement: 0.5 – 1% scale uncertainty
● Jet energy scale: 1%
● Luminosity: 1.5 - 2.5%
● Continuous upgrades with time

Drawing of the 
H1 experiment
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Analysis strategy and kinematic range
Data must be corrected for detector effects

● Kinematic migrations
● Acceptance and efficiency effects

Regularised unfolding
● For accurate descripton of migrations

consider an 'extended phase space' 

Extended phase space for unfolding Cross section phase space

NC DIS Q2 > 3 GeV2 5.5 < Q2 < 80 GeV2

y > 0.08 0.2 < y < 0.6

(inclusive) Jets P
T

jet > 3 GeV P
T

jet > 4.5 GeV

-1.5 < ηlab < 2.75 -1.0 < ηlab < 2.5

Dijet and Trijet P
T

jet > 4 GeV

<P
T

jet> > 3 GeV <P
T

jet> > 5 [5.5] GeV 

Typical event display

e±
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Regularised unfolding
Regularised unfolding using TUnfold 
● Calculate unfolded distribution x by minimising

● Linear analytic solution 
● Linear error propagation
● Statistical correlations are considered in Vy

Simultaneous unfolding of
Inclusive jet, Dijet, Trijet, NC DIS
● Statistical correlations are considered
● Matrix constituted from O(106) entries

● Two generators used
● Difference between the two -> model uncertainty

● Up to 6 variables considered for migrations
● 'detector-level fake jets' (or events) are constrained 

with NC DIS data EPJ C75 (2015) 2 

χ
2
(x , τ)=( y−Ax)TV y

−1
( y−Ax )+ τ L2

JINST 7 (2012) 
T10003

x Hadron level
y Detector level
V

y
Covariance matrix

A Migration matrix
τL2 Regularisation term
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Control distributions
Acceptance of NC DIS events

● Scattered lepton is found in SpaCal
● Lepton energy Ee > 10.5 GeV
● Selection based on un-prescaled SpaCal

electron trigger

Monte Carlo generators
● Rapgap: LO matrix elements + PS
● Djangoh: Color-dipole model
● String fragmentation for hadronisation

Background
● Photoproduction simulation using Pythia
● Normalised to data using dedicated event selection
● Background for jet quantities almost negligible
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Detector-level distributions for jets
Jet reconstruction

● kT jet algorithm with R=1
● Jets built from tracks and clusters
● Jet energy calibration using neural networks

Approx. 1% Jet-energy-scale uncertainty

Monte Carlo predictions
● MC simulations used for unfolding 
● Jet multiplicities and spectra not well modelled

● Djangoh: pT
jet spectra too hard

● Rapgap: Jet multiplicity underestimated
● Both generators tend to have too few jets in 

forward direction 
-> MC is weighted to describe data

Dijet and Trijet
● Distributions raise steeply due to 

pT
jet > 5 GeV requirement

-> Extended phase space important for 
migrations
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Comparisons to Predictions
Recently improved prediction became available for DIS jets

● approximate NNLO (Phys. Rev. D92 (2015) 7, 074037)
● NNLO (Rev. Lett. 117 (2016) 042001)

● Both theory groups have extended their calculations for our data
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Dijet cross sections

Dijet cross sections in NC DIS as a 
function of Q2 and <pT>2

● <PT>2 = (PT
jet1 + PT

jet2)/2
with: PT

jet > 4 GeV

Comparison to Predictions
● NLO (nlojet++, NNPDF30_nlo)

● approximate NNLO (JetVip, NNPDF30_nnlo)

● NNLO (NNLOJET, NNPDF30_nnlo)

● Overall: predictions give reasonable 
description of data
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Ratio of dijet cross sections to NLO

Scale uncertainty: 7-point variation
● Vary μr and μf with factors of 2 and 0.5
● Exclude variations in 'opposite' directions
● Assign largest and smallest variations as 

uncertainty

Ratio to NLO prediction
● NLO give reasonable descriptions 

within large scale uncertainties
● aNNLO improves shape

● aNNLO expected to improve 
description at high <pT>

● NNLO improves shape dependence
● NNLO predictions have smaller scale 

uncertainties than NLO at high-<pT>
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Normalised jet cross sections

● Jet cross sections are normalised to 
'inclusive neutral-current DIS cross section' in  
respective Q2 bin

Advantage
● Reduced experimental uncertainties:

Cancellation of normalisation uncertainty
(in our case: only partial cancellation, because NC DIS cross sections are 
measured only with a subset of the jet data because of trigger reasons)

NC DIS cross sections
● NLO (ZM-VFNS) and NNLO (FONLL-C) 

predictions provide good description of data 
● PDFs are fitted to NC DIS cross sections

Inclusive neutral-current DIS 
cross sections
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Normalised dijet cross sections
Normalised dijet cross sections

● Predictions obtained as ratio jet and 
NC DIS calculations

● Scale uncertainties are obtained by 
varying jet cross sections only
(because NC DIS are fitted to data)

Data to theory agreement
● Overall good description by 

NLO, aNNLO and NNLO predictions
● Somewhat reduced experimental 

uncertainties
● NNLO slightly overshoots data

-> partially caused by normalisation 
w.r.t. NC DIS
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Reminder: inclusive jets @ high-Q2

Eur. Phys. J. C75 (2015) 2:
● Jet cross sections at high-Q2 
● Inclusive jet, dijet and trijet cross sections
● 150 < Q2 < 15000GeV2

Inclusive jets previously published
● 7 < pT < 50 GeV

Recent studies showed
● Inclusive jets are well measurable 

down to pT = 4 GeV
● The original 'high-Q2 '-analysis contained a 

cross section bin for inclusive jets for:
 

5 < pT < 7 GeV
● These additional bins are now provided

(for each Q2 range) 
● Absolute and normalised cross sections

Eur. Phys. J. C75 (2015) 2



16Daniel Britzger – H1 JetsICHEP2018, Seoul, Korea

Inclusive jet cross sections

Inclusive jet cross sections
● low Q2: 4.5 < PT < 50 GeV
● high Q2: 5 < PT < 50 GeV

Predictions
● NLO, aNNLO & NNLO

NLO
● Data well described within uncertainties

aNNLO
● Somewhat improved shape description

NNLO
● Improved shape and normalisation
● Reduced scale uncertainties for larger 

values of μr



17Daniel Britzger – H1 JetsICHEP2018, Seoul, Korea

Normalised inclusive jet cross sections

Normalised inclusive jets
● Normalisation w.r.t. inclusive NC DIS 

cross section in respective Q2 bin
● Significant reduction of uncertainties 

at higher values of Q2

Normalised jet cross sections
● Increase as a function of Q2 for a 

given PT interval
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Trijet cross sections
ep -> 3jets
● Leading order O(αs

2)

● No NNLO predictions available yet
● NLO(trijets) of same order in αs than NNLO 

inclusive jet or dijet

Description by NLO
● Data well described by NLO
● Data precision mainly higher than scale 

uncertainties
● Similar trends than for dijets observed:

low scales: NLO undershoots data
high <PT> : NLO overshoots data

Normalised trijets also measured

Exemple for a LO 
matrix element
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Phenomenological application

22 < Q2 < 30 GeV2

35 < P
T

jet < 50 GeV
22 < Q2 < 30 GeV2

4.5 < P
T

jet < 7 GeV

NLO

PDF dependence of inclusive jet cross sections
● Cross sections of single data points as a function of x(PDF)
● PT-binning probes different x-regions
● Lowest x-values:  x ~ 10-3

● High-PT cross sections: x > 10-1

-> H1 Jets may become important for high-x gluon
-> Advantage: No convolution with second hadron in DIS

● x-dependence shows little dependence on Q2
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Determination of the strong coupling α
s
(M

Z
)

Use low- and high-Q2 data
● Low-Q2 jets [arxiv:1611.03421]

● high-Q2 jets (Eur.Phys.J.C75 (2015) 2)  
All normalised jet cross sections

● Normalised inclusive jet
● Normalised dijets 
● Normalised trijets
● Correlations of uncertainties are known

● Fit αs(MZ) in χ2-minimization procedure

Two results (NLO)
● Probe running of αs(μr) 

Group data points with similar value of μr

● One fit to all data points together: αs(MZ)

● Very high experimental precision
● Using NNLO: dominating theory uncertainties is reduced→ see talk this afternoon

World average (PDG2016)
α

s
(M

Z
) = 0.1181 ± 0.0011
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Conclusion
Last missing piece of H1 jet legacy

High precision jet cross sections
● Inclusive jet, dijet and trijets
● Also available: normalised w.r.t. inclusive NC DIS

Probe running of αs over one order of magnitude 
● Very high experimental precision on αs(MZ) 
● Challenging regime: 5 < μr < 70 GeV

Future applications PDFs with H1 jet data
● Very high sensitivity to gluon density

Process HERA-I HERA-II

Low Q2

Inclusive jet
Dijet
Trijet

EPJ C 67 
(2010) 1 

EPJ C 77 (2017) 
215
(this presentation)

High Q2

Inclusive jet
Dijet
Trijet

EPJ C 65 
(2010) 363 

EPJ C 75 
(2015) 2

Finally we arrived: High-precision jet data together with  NNLO predictions

Eur.Phys.J.C65 (2010) 363 
Eur.Phys.J.C67 (2010) 1 
Eur.Phys.J.C75 (2015) 2
Eur.Phys.J C77 (2017) 215



22Daniel Britzger – H1 JetsICHEP2018, Seoul, Korea



23Daniel Britzger – H1 JetsICHEP2018, Seoul, Korea



24Daniel Britzger – H1 JetsICHEP2018, Seoul, Korea



25Daniel Britzger – H1 JetsICHEP2018, Seoul, Korea

PDF dependence
Studies using different PDF sets

● Study various NNLO PDF sets
● NNPDF3.0
● CT14
● MMHT
● HERAPDF2.0

● All PDFs determined with αs(MZ) = 0.118
● Technical aspect:

Convolute with NLO matrix elements because NNLO matrix 
elements are too time-consuming to recalculate

Effect of different PDFs
● Very small
● All studied NNLO PDF sets are quite 

consistent
● Different PDFs mainly covered by 

NNPDF30 PDF uncertainty
● Increased PDF uncertainty for high 

values of PT
● -> Future PDFs may have lower high-x 

gluon
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