Determination of the strong coupling constant $\alpha_s(m_Z)$ in next-to-next-to-leading order QCD using H1 jet cross section measurements

Daniel Britzger
for the H1 Collaboration and NNLOJET

ICHEP2018 Seoul
Seoul, Korea
06.07.2018
Why α_s?

Strong coupling α_s enters in the calculation of every process that involves the strong interaction

World average value

$\alpha_s(m_Z) = 0.1181 \pm 0.0011$ [PDG2016]

~0.9% relative uncertainty

Uncertainty on α_s

- non-negligible uncertainties on many observables: e.g. Higgs production cross sections, branching ratios, ...

Jet measurements

- Direct constraint on α_s
- So far no NNLO results available
Deep-inelastic ep scattering

Neutral current scattering (NC)

$ep \rightarrow e'X$

- $e(k)$
- $e'(k')$
- $p(p)$
- $\gamma/Z(q)$
- x (virtual photon)
- $Q^2 = -q^2 = -(k - k')^2$
- $y = \frac{p \cdot q}{p \cdot k}$

Kinematic variables

HERA ep collider in Hamburg

- Data taking periods:
 - HERA I: 1994 – 2000
 - HERA II: 2003 – 2007
- $\sqrt{s} = 300$ or 319 GeV
H1 Experiment at HERA

H1 multi-purpose detector
Asymmetric design
Trackers
- Silicon tracker,
- Jet chambers
- Proportional chambers
Calorimeters
- Liquid Argon sampling calorimeter
- SpaCal: scintillating fiber calorimeter
Superconducting solenoid, 1.15T
Muon detectors

High experimental precision
- Overconstrained system in NC DIS
- Electron measurement: 0.5 – 1% scale uncertainty
- Jet energy scale: 1%
Jet production in DIS

Jets in DIS measured in Breit frame
- ep -> 2jets
- Virtual boson collides 'head-on' with parton from proton
- Boson-gluon fusion dominant process
- QCD compton important only for high-p_T jets (high-x)

Jet measurement sensitive to α_s and gluon density
Inclusive jet cross sections by H1

Inclusive jet cross sections
- $d\sigma/dQ^2dP_T^{jet}$
- 300 GeV, HERA-I & HERA-II
- low-Q^2 (<100 GeV2) and high-Q^2 (>150 GeV2) regions

Consistency
- kt-algorithm, $R=1$
- $-1.0 < \eta < 2.5$
- P_T ranges from 4.5 to 50 GeV

HERA-I low-Q^2

HERA-II low-Q^2

300 GeV high-Q^2

HERA-I high-Q^2

HERA-II high-Q^2

ICHEP2018, Seoul Daniel Britzger – $\alpha_s(m_Z)$ in NNLO using H1 jets
Dijet cross section by H1

Dijet definitions
- $<p_T>$ greater than 5, 7 or 8.5 GeV
- p_T jet greater 4, 5 or 7 GeV
- Asymmetric cuts on p_T^{jet1} and p_T^{jet2}
- M_{12} cut for two data sets

Dijet cross sections
- $d\sigma/dQ^2dp_T$
- 300 GeV, HERA-I & HERA-II
- low-Q^2 and high-Q^2

Earlier studies
All inclusive jet and dijet data have been employed for α_s extractions previously

$->$ Data and uncertainties well-understood
$->$ NNLO theory is new

HERA-I low-Q^2

HERA-II low-Q^2

300 GeV high-Q^2

HERA-I high-Q^2

HERA-II high-Q^2

ICHEP2018, Seoul
Daniel Britzger – $\alpha_s(m_Z)$ in NNLO using H1 jets
DIS jet production in NNLO

A bit of history

- 1973 asymptotic freedom of QCD
 [PRL 30(1973) 1343 & 1346]
- 1993 NLO studies of DIS jet cross sections
- 2016 NNLO corrections for DIS jets

Antenna subtraction

- Cancellation of IR divergences with local subtraction terms
- Construction of (local) counter terms
- Move IR divergences across different phase space multiplicities
Scale dependence of NNLO cross sections

Simultaneous variation of μ_R and μ_F

At lower scales

- Significant NNLO k-factors
- NNLO with reduced scale dependence
- Inclusive jets with higher scale dependence than dijets

At higher scales

- NNLO with reduced scale dependence
- μ_F dependence very small
\(\alpha_s \)-fit methodology

\(\alpha_s \) determined in \(\chi^2 \)-minimisation

- \(\alpha_s(m_Z) \) is a free parameter to NNLO theory prediction \(\sigma_i \)

\[
\chi^2 = \sum_{i,j} \log \frac{S_i}{\sigma_i} (V_{\text{exp}} + V_{\text{had}} + V_{\text{PDF}})_{ij}^{-1} \log \frac{S_j}{\sigma_j}
\]

- NNLO theory is sensitive to \(\alpha_s(m_Z) \)

\[
\sigma_i = \sum_{n=1}^{\infty} \sum_{k=g,q,\bar{q}} \int dx f_k(x, \mu_F) \hat{\sigma}_{i,k}^{(n)}(x, \mu_R, \mu_F) \cdot c_{\text{had}}
\]

- \(\alpha_s \) dependence of PDF is accounted for by using \(\mu_{F,0}=20\text{GeV} \) and applying DGLAP

Perform fits to

- All inclusive jet data sets (137 data points)
- All dijet data sets (103 data points)
- All H1 jet data taken together (denoted as 'H1 jets')
 (exclude HERA-I dijet data as correlations to inclusive jets are not known)
Strong coupling in NNLO from jets

α_s from individual data sets
- High experimental precision
- Scale uncertainty is largest (theory) error
- All fits with good χ^2
 - \rightarrow consistency of data

Main result
- Inclusive jets & dijets $\mu>28$GeV, 91 data points

$$\alpha_s(m_Z) = 0.1157 (20)_{\text{exp}} (6)_{\text{had}} (3)_{PDF} (2)_{PDF\alpha_s} (3)_{PDF\text{set}} (27)_{\text{scale}}$$

- Moderate exp. precision (due to $\mu>28$GeV)
- Scale uncertainty dominates
- PDF uncertainties negligible

Smallest exp. uncertainty
- Fit to all data: $\Delta\alpha_s = (9)_{\text{exp}}$
Scale dependence of α_s fit

α_s results as a function of scale factors
- Smooth results for studied scale variations
- μ_R variation with more impact than μ_F

χ^2 values
- somewhat a 'technical parameter'
 -> not intended to be a parabolas
- χ^2 values increase for large scale factors
 -> large scale factors disfavoured
Study scales calculated from Q^2 and p_T

'\(p_T\)' refers to: p_T^{jet} or $<p_T>$

\(\alpha_s\) results and \(\chi^2\) values
- Spread of results covered by scale uncertainty
- \(\chi^2\) values are similar for different choices
 \(\rightarrow\) NNLO with small 'scale dependence'

NLO matrix elements
- Large scale uncertainty
- Relevant dependence of result on scale choice
- Mainly larger \(\chi^2\) values than NNLO
- Larger fluctuation of \(\chi^2\) values than NNLO

NNLO with reduced scale dependence
PDF is an external input to NNLO calculation

PDF fitting groups differ

- choice of input data sets, PDF parameterisations, model parameters, fit methodology, etc...
- Though: different PDFs appear to be quite consistent

Choice of α_s for PDF determination

- $\alpha_{PDF}(m_Z)$ important input parameter to PDF fit
- Small correlation with fitted results

Our (main) α_s result

- almost independent on PDF assumptions
Comparison of NNLO predictions with data

All H1 jet cross section data compared to NNLO predictions
 • Inclusive jets
 • Dijets

Overall good agreement
 • NNLO describes all data very well
 • Also justified of course by good χ^2 values of the fits

Great success of pQCD
Tests of running of strong coupling

Test running of strong coupling

- Perform fits to **groups of data points** at similar scale
- Assumes running to be valid within the limited range covered by interval
- All fits have good χ^2

Results

- Consistency with expectation at all scales
- Scale uncertainty dominates at lower μ
- Consistency of inclusive jets and dijets **(backup)**

Most precise test in range $7 < \mu < 90$ GeV
Alternative α_s fitting approach

'PDF+α_s -fit'
H1PDF2017
Alternative α_s fitting approach: 'PDF+α_s-fit'

Simultaneous fit PDFs and α_s
- PDFs are predominantly determined from H1 inclusive DIS data

Perform H1 alone PDF fit: H1PDF2017
- Use (all) H1 inclusive DIS data
- Use (all) H1 normalised jet cross section data
-> 1529 data points

Normalised jet cross sections
- Jet cross sections normalised to inclusive DIS
- Correlations of jets and inclusive DIS cancel

PDFs are parameterised as

$$xf(x)\big|_{\mu_0} = f_Ax^f_B(1-x)^f_C(1+f_Dx+f_Ex^2)$$

Cross section: \sim PDF $\otimes \sigma$

$$\sigma_i = \sum_{k=g,q,\bar{q}} \int dx f_k(x, \mu_F) \delta_{i,k}(x, \mu_R, \mu_F) \cdot c_{\text{had},i}$$

Normalised jets

<table>
<thead>
<tr>
<th>Data set</th>
<th>Q^2 domain</th>
<th>Inclusive jets</th>
<th>Dijets</th>
<th>Normalised inclusive jets</th>
<th>Normalised dijets</th>
<th>Stat. corr. between samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 GeV [17]</td>
<td>high-Q^2</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>HERA-I [23]</td>
<td>low-Q^2</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>HERA-I [21]</td>
<td>high-Q^2</td>
<td>✓</td>
<td>–</td>
<td>✓</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>HERA-II [15]</td>
<td>low-Q^2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HERA-II [15, 24]</td>
<td>high-Q^2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Inclusive NC & CC DIS

<table>
<thead>
<tr>
<th>Data set</th>
<th>Lepton type</th>
<th>\sqrt{s}</th>
<th>Q^2 range</th>
<th>NC cross sections</th>
<th>CC cross sections</th>
<th>Lepton beam polarisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined low-Q^2 [64]</td>
<td>e^+</td>
<td>301,319</td>
<td>(0.5) 12 – 150</td>
<td>✓</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Combined low-E_T [64]</td>
<td>e^+</td>
<td>225,252</td>
<td>(1.5) 12 – 90</td>
<td>✓</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>94 – 97 [61]</td>
<td>e^+</td>
<td>301</td>
<td>150 – 30,000</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>98 – 99 [62, 63]</td>
<td>e^-</td>
<td>319</td>
<td>150 – 30,000</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>99 – 00 [63]</td>
<td>e^+</td>
<td>319</td>
<td>150 – 30,000</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HERA-II [65]</td>
<td>e^+</td>
<td>319</td>
<td>120 – 30,000</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>HERA-II [65]</td>
<td>e^-</td>
<td>319</td>
<td>120 – 50,000</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
PDF+α_s-fit – H1PDF2017 [NNLO]

Result for PDFs
- Set of PDFs determined with high precision
- Despite α_s is a free parameter to the fit: precision is competitive with global PDF fitters
- Gluon at lower x-values tends to be higher
 -> nowadays: also favored by small-x resummed PDFs

PDF+α_s-fit
- Using H1 jet data allows a precise determination of the gluon PDF and α_s
- $\chi^2/\text{ndf} \sim 1.01$

Comparison of H1PDF2017 and NNPDF3.1

Correlation of α_s and g
Results

α_s determined in PDF+α_s-fit

$\alpha_s(m_Z) = 0.1142 \pm 0.0011_{\text{exp., had., PDF}} \pm 0.0002_{\text{mod}} \pm 0.0006_{\text{par}} \pm 0.0016_{\text{scale}}$

- High experimental precision
- Moderate theory uncertainty from NNLO

Comparison

- Higher precision than most of other (comparable) determinations
 - \Rightarrow PDF groups commonly determine exp. uncertainties (only)
 - \Rightarrow We further estimate scale uncertainties

- All H1 results consistent
- Results competitive with world average

- All results from DIS data tend to be lower than world average value
Summary

All H1 jet data confronted with NNLO predictions
- NNLO provides improved description w.r.t. NLO
- Quantitative comparison of all data
- NNLO predictions studied in great detail

NNLO used for determination of $\alpha_s(m_Z)$
- α_s-fit
 $$\alpha_s(m_Z) = 0.1157 (20)_{\text{exp}} (6)_{\text{had}} (3)_{\text{PDF}} (2)_{\text{PDF}} \alpha_s (3)_{\text{PDFset}} (27)_{\text{scale}}$$
- α_s+PDF-fit
 $$\alpha_s(m_Z) = 0.1142 (11)_{\text{exp, had, PDF}} (2)_{\text{mod}} (2)_{\text{par}} (26)_{\text{scale}}$$
- High experimental and theoretical precision

NNLO predictions for jets are used for PDF fits for the first time
- Successful determination of gluon-density and $\alpha_s(m_Z)$ simultaneously
- Competitive precision of PDFs and $\alpha_s(m_Z)$
- H1PDF2017 available at LHAPDF

Fruitful collaboration of theoreticians and experimentalists (H1 & NNLOJET)
Daniel Britzger – $\alpha_s(m_Z)$ in NNLO using H1 jets
Study of total uncertainty

Scale uncertainties at various scales μ
- At low-μ: large scale uncertainties...
- ... but also high sensitivity to $\alpha_s(m_Z)$

Fits imposing a cut on scale μ
- Repeat α_s fits: successively cut away data below μ_{cut}

Results
- Scale uncertainty decreases with μ_{cut}
- Exp. uncertainty increases with μ_{cut}

Cut on μ can balance between exp. and theoretical uncertainties at constant total precision
$\alpha_s(m_Z)$ dependence of cross sections

Jet cross sections directly sensitive to α_s

$$\sigma_i = \sum_{n=1}^{\infty} \sum_{k=g,q,\bar{q}} \int dx f_k(x, \mu_F) \hat{\sigma}_{i,k}^{(n)}(x, \mu_R, \mu_F) \cdot c_{\text{had}}$$

Two α_s-dependencies

- Predominant α_s-sensitivity from ME's
- PDF's with almost negligible sensitivity

Graphs

Inclusive jets

- H1 HERA-II phase space
- $16 < Q^2 < 22$ GeV2
- $7 < P_T < 11$ GeV

Dijets

- H1 HERA-II phase space
- $16 < Q^2 < 22$ GeV2
- $7 < \langle P_T \rangle < 11$ GeV

- $400 < Q^2 < 700$ GeV2
- $30 < P_T < 50$ GeV

- $400 < Q^2 < 700$ GeV2
- $30 < \langle P_T \rangle < 50$ GeV

Graphs showing $\sigma / \sigma(\alpha_s(m_Z))$ for different $\alpha_s(m_Z)$ values.
α_s dependencies separately fitted

Fits to
- Inclusive jet and dijet data fitted together
- Fits performed for different PDFs

Fits with two free α_s parameters

\[
\sigma_i = f(\alpha_s^f(m_Z)) \otimes \hat{\sigma}_k(\alpha_s^\hat{\sigma}(m_Z)) \cdot c_{\text{had}}
\]

Results
- Most sensitivity arises from matrix elements
- Best-fit α_s-values in PDF's and ME's are consistent
- Anti-correlation between $\alpha_s^{\text{PDF}}(m_Z)$ and $\alpha_s^{\Gamma}(m_Z)$
<table>
<thead>
<tr>
<th>Data</th>
<th>μ_{cut}</th>
<th>$\alpha_s(m_Z)$ with uncertainties</th>
<th>th</th>
<th>tot</th>
<th>χ^2 / n_{dof}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusive jets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300 GeV high-Q^2</td>
<td>$2m_b$</td>
<td>0.1221 (31){\text{exp}} (22){\text{had}} (5){\text{PDF}} (3){\text{PDF}{\alpha_s}} (4){\text{PDFset}} (36)_{\text{scale}}</td>
<td>(43)_{\text{th}}</td>
<td>(53)_{\text{tot}}</td>
<td>6.5/15</td>
</tr>
<tr>
<td>HERA-I low-Q^2</td>
<td>$2m_b$</td>
<td>0.1093 (17){\text{exp}} (8){\text{had}} (5){\text{PDF}} (5){\text{PDF}{\alpha_s}} (7){\text{PDFset}} (33)_{\text{scale}}</td>
<td>(35)_{\text{th}}</td>
<td>(39)_{\text{tot}}</td>
<td>17.5/22</td>
</tr>
<tr>
<td>HERA-I high-Q^2</td>
<td>$2m_b$</td>
<td>0.1136 (24){\text{exp}} (9){\text{had}} (6){\text{PDF}} (4){\text{PDF}{\alpha_s}} (4){\text{PDFset}} (31)_{\text{scale}}</td>
<td>(33)_{\text{th}}</td>
<td>(41)_{\text{tot}}</td>
<td>14.7/23</td>
</tr>
<tr>
<td>HERA-II low-Q^2</td>
<td>$2m_b$</td>
<td>0.1187 (18){\text{exp}} (8){\text{had}} (4){\text{PDF}} (4){\text{PDF}{\alpha_s}} (3){\text{PDFset}} (45)_{\text{scale}}</td>
<td>(46)_{\text{th}}</td>
<td>(50)_{\text{tot}}</td>
<td>29.6/40</td>
</tr>
<tr>
<td>HERA-II high-Q^2</td>
<td>$2m_b$</td>
<td>0.1121 (18){\text{exp}} (9){\text{had}} (5){\text{PDF}} (4){\text{PDF}{\alpha_s}} (2){\text{PDFset}} (35)_{\text{scale}}</td>
<td>(37)_{\text{th}}</td>
<td>(41)_{\text{tot}}</td>
<td>42.5/29</td>
</tr>
<tr>
<td>Dijets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300 GeV high-Q^2</td>
<td>$2m_b$</td>
<td>0.1213 (39){\text{exp}} (17){\text{had}} (5){\text{PDF}} (2){\text{PDF}{\alpha_s}} (3){\text{PDFset}} (31)_{\text{scale}}</td>
<td>(35)_{\text{th}}</td>
<td>(52)_{\text{tot}}</td>
<td>13.6/15</td>
</tr>
<tr>
<td>HERA-I low-Q^2</td>
<td>$2m_b$</td>
<td>0.1101 (23){\text{exp}} (8){\text{had}} (5){\text{PDF}} (4){\text{PDF}{\alpha_s}} (5){\text{PDFset}} (36)_{\text{scale}}</td>
<td>(38)_{\text{th}}</td>
<td>(45)_{\text{tot}}</td>
<td>10.4/20</td>
</tr>
<tr>
<td>HERA-II low-Q^2</td>
<td>$2m_b$</td>
<td>0.1173 (14){\text{exp}} (9){\text{had}} (5){\text{PDF}} (5){\text{PDF}{\alpha_s}} (3){\text{PDFset}} (44)_{\text{scale}}</td>
<td>(45)_{\text{th}}</td>
<td>(47)_{\text{tot}}</td>
<td>17.4/41</td>
</tr>
<tr>
<td>HERA-II high-Q^2</td>
<td>$2m_b$</td>
<td>0.1089 (21){\text{exp}} (7){\text{had}} (5){\text{PDF}} (3){\text{PDF}{\alpha_s}} (3){\text{PDFset}} (25)_{\text{scale}}</td>
<td>(27)_{\text{th}}</td>
<td>(34)_{\text{tot}}</td>
<td>28.0/23</td>
</tr>
<tr>
<td>H1 inclusive jets</td>
<td>$2m_b$</td>
<td>0.1132 (10){\text{exp}} (5){\text{had}} (4){\text{PDF}} (4){\text{PDF}{\alpha_s}} (2){\text{PDFset}} (40)_{\text{scale}}</td>
<td>(40)_{\text{th}}</td>
<td>(42)_{\text{tot}}</td>
<td>134.0/133</td>
</tr>
<tr>
<td>H1 inclusive jets</td>
<td>28 GeV</td>
<td>0.1152 (20){\text{exp}} (6){\text{had}} (2){\text{PDF}} (2){\text{PDF}{\alpha_s}} (3){\text{PDFset}} (26)_{\text{scale}}</td>
<td>(27)_{\text{th}}</td>
<td>(33)_{\text{tot}}</td>
<td>44.1/60</td>
</tr>
<tr>
<td>H1 dijets</td>
<td>$2m_b$</td>
<td>0.1148 (11){\text{exp}} (6){\text{had}} (5){\text{PDF}} (4){\text{PDF}{\alpha_s}} (4){\text{PDFset}} (40)_{\text{scale}}</td>
<td>(41)_{\text{th}}</td>
<td>(42)_{\text{tot}}</td>
<td>93.9/102</td>
</tr>
<tr>
<td>H1 dijets</td>
<td>28 GeV</td>
<td>0.1147 (24){\text{exp}} (5){\text{had}} (3){\text{PDF}} (2){\text{PDF}{\alpha_s}} (3){\text{PDFset}} (24)_{\text{scale}}</td>
<td>(25)_{\text{th}}</td>
<td>(35)_{\text{tot}}</td>
<td>30.8/43</td>
</tr>
<tr>
<td>H1 jets</td>
<td>$2m_b$</td>
<td>0.1143 (9){\text{exp}} (6){\text{had}} (5){\text{PDF}} (5){\text{PDF}{\alpha_s}} (4){\text{PDFset}} (42)_{\text{scale}}</td>
<td>(43)_{\text{th}}</td>
<td>(44)_{\text{tot}}</td>
<td>195.0/199</td>
</tr>
<tr>
<td>H1 jets</td>
<td>28 GeV</td>
<td>0.1157 (20){\text{exp}} (6){\text{had}} (3){\text{PDF}} (2){\text{PDF}{\alpha_s}} (3){\text{PDFset}} (27)_{\text{scale}}</td>
<td>(28)_{\text{th}}</td>
<td>(34)_{\text{tot}}</td>
<td>63.2/90</td>
</tr>
<tr>
<td>H1 jets</td>
<td>42 GeV</td>
<td>0.1168 (22){\text{exp}} (7){\text{had}} (2){\text{PDF}} (2){\text{PDF}{\alpha_s}} (5){\text{PDFset}} (17)_{\text{scale}}</td>
<td>(20)_{\text{th}}</td>
<td>(30)_{\text{tot}}</td>
<td>37.6/40</td>
</tr>
<tr>
<td>H1PDF2017 [NNLO]</td>
<td>$2m_b$</td>
<td>0.1142 (11){\text{exp, NP, PDF}} (2){\text{mod}} (2){\text{par}} (26){\text{scale}}</td>
<td>(28)_{\text{tot}}</td>
<td></td>
<td>1539.7/1516</td>
</tr>
</tbody>
</table>
Daniel Britzger – $\alpha_s(m_Z)$ in NNLO using H1 jets

ICHEP2018, Seoul
<table>
<thead>
<tr>
<th>Data set</th>
<th>\sqrt{s} [GeV]</th>
<th>\mathcal{L} [pb$^{-1}$]</th>
<th>DIS kinematic range</th>
<th>Inclusive jets (P_T^{\text{jet}} < 50 \text{ GeV})</th>
<th>Dijets (n_{\text{jets}} \geq 2), (P_T^{\text{jet}} > 7 \text{ GeV})</th>
<th>(8.5 < \langle P_T \rangle < 35 \text{ GeV})</th>
<th>(5 < P_T^{\text{jet}} < 50 \text{ GeV})</th>
<th>(5 < \langle P_T \rangle < 80 \text{ GeV})</th>
<th>(m_{12} > 18 \text{ GeV})</th>
<th>(\langle P_T \rangle > 7 \text{ GeV})</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 GeV</td>
<td>300</td>
<td>33</td>
<td>150 < (Q^2 < 5000 \text{ GeV}^2) (0.2 < y < 0.6)</td>
<td>7 < (P_T^{\text{jet}} < 50 \text{ GeV})</td>
<td>(P_T^{\text{jet}} > 7 \text{ GeV})</td>
<td>(8.5 < \langle P_T \rangle < 35 \text{ GeV})</td>
<td>(5 < P_T^{\text{jet}} < 50 \text{ GeV})</td>
<td>(5 < \langle P_T \rangle < 80 \text{ GeV})</td>
<td>(m_{12} > 18 \text{ GeV})</td>
<td>(\langle P_T \rangle > 7 \text{ GeV})</td>
</tr>
<tr>
<td>HERA-I</td>
<td>319</td>
<td>43.5</td>
<td>5 < (Q^2 < 100 \text{ GeV}^2) (0.2 < y < 0.7)</td>
<td>5 < (P_T^{\text{jet}} < 80 \text{ GeV})</td>
<td>(P_T^{\text{jet}} > 7 \text{ GeV})</td>
<td>(8.5 < \langle P_T \rangle < 35 \text{ GeV})</td>
<td>(5 < P_T^{\text{jet}} < 50 \text{ GeV})</td>
<td>(5 < \langle P_T \rangle < 80 \text{ GeV})</td>
<td>(m_{12} > 18 \text{ GeV})</td>
<td>(\langle P_T \rangle > 7 \text{ GeV})</td>
</tr>
<tr>
<td>HERA-I</td>
<td>319</td>
<td>65.4</td>
<td>150 < (Q^2 < 15000 \text{ GeV}^2) (0.2 < y < 0.7)</td>
<td>5 < (P_T^{\text{jet}} < 50 \text{ GeV})</td>
<td>(P_T^{\text{jet}} > 7 \text{ GeV})</td>
<td>(8.5 < \langle P_T \rangle < 35 \text{ GeV})</td>
<td>(5 < P_T^{\text{jet}} < 50 \text{ GeV})</td>
<td>(5 < \langle P_T \rangle < 80 \text{ GeV})</td>
<td>(m_{12} > 18 \text{ GeV})</td>
<td>(\langle P_T \rangle > 7 \text{ GeV})</td>
</tr>
<tr>
<td>HERA-II</td>
<td>319</td>
<td>290</td>
<td>5.5 < (Q^2 < 80 \text{ GeV}^2) (0.2 < y < 0.6)</td>
<td>4.5 < (P_T^{\text{jet}} < 50 \text{ GeV})</td>
<td>(P_T^{\text{jet}} > 4 \text{ GeV})</td>
<td>(5 < \langle P_T \rangle < 50 \text{ GeV})</td>
<td>(5 < P_T^{\text{jet}} < 50 \text{ GeV})</td>
<td>(5 < \langle P_T \rangle < 80 \text{ GeV})</td>
<td>(m_{12} > 18 \text{ GeV})</td>
<td>(\langle P_T \rangle > 7 \text{ GeV})</td>
</tr>
<tr>
<td>HERA-II</td>
<td>319</td>
<td>351</td>
<td>150 < (Q^2 < 15000 \text{ GeV}^2) (0.2 < y < 0.7)</td>
<td>5 < (P_T^{\text{jet}} < 50 \text{ GeV})</td>
<td>(P_T^{\text{jet}} > 7 \text{ GeV})</td>
<td>(8.5 < \langle P_T \rangle < 35 \text{ GeV})</td>
<td>(5 < P_T^{\text{jet}} < 50 \text{ GeV})</td>
<td>(7 < \langle P_T \rangle < 50 \text{ GeV})</td>
<td>(m_{12} > 16 \text{ GeV})</td>
<td>(\langle P_T \rangle > 7 \text{ GeV})</td>
</tr>
</tbody>
</table>
Inclusive jet cross sections

- Low Q^2: $4.5 < P_T < 50$ GeV
- High Q^2: $5 < P_T < 50$ GeV

Predictions

- NLO, aNNLO & NNLO

NLO

- Data well described within uncertainties

aNNLO

- Somewhat improved shape description

NNLO

- Improved shape and normalisation
- Reduced scale uncertainties for larger values of μ_r

Also measured

- Normalised inclusive jet cross sections
Ratio of dijet cross sections to NLO

Scale uncertainty
- So-called '7-point scale variation':
 Vary μ_r and μ_f independently by factors of 2 and 0.5, but exclude variations in 'opposite' directions

Ratio to NLO prediction
- NLO give reasonable descriptions within large scale uncertainties
- aNNLO improves shape
 - aNNLO expected to improve description at high $<p_T>$
- NNLO improves shape dependence
 - NNLO predictions have smaller scale uncertainties than NLO at high-$<p_T>$