

环形正负电子对撞机 Circular Electron Positron Collider

CEPC Injector Linac Design

Xiaoping Li, Cai Meng, Guoxi Pei, Jingru Zhang,, Dou Wang, Chenghui Yu, Jie Gao, Shilun Pei, Yunlong Chi Institute of High Energy Physics, CAS, Beijing

➤Introduction

- Main parameters
- Layout of Linac
- ➢Source design
 - Electron source
 - Positron source
- ➢Linac design
 - Electron/Positron mode
 - Error study

➤Summary

➤Introduction

- Main parameters
- Layout of Linac

Source design

- Electron source
- Positron source

➢Linac design

- Electron/Positron mode
- Error study

Summary

➤Linac design goal

- High Availability and Reliability
 - Simple structure and mature technology: S-band accelerating structure as baseline(2856.75MHz)
- Always should provide beams that can meet requirements of Booster
 - Should be have **potential** to meet the higher requirements and updates in the future

Parameter	Symbol	Unit	Value	Potential
e⁻ /e⁺ beam energy	E _{e-} /E _{e+}	GeV	10	>10
Repetition rate	f _{rep}	Hz	100	
e ⁻ /e ⁺ bunch population	Ne-/Ne+		>9.4×10 ⁹	>1.9×10 ¹⁰
		nC	>1.5	→ >3
Energy spread (e ⁻ /e ⁺)	σ_{E}		<2×10 ⁻³	
Emittance (e ⁻ /e ⁺)	٤ _r	nm	<120 -	→ <40
e ⁻ beam energy on Target		GeV	4	
e ⁻ bunch charge on Target		nC	10	

Introduction

Layout of Linac

- ESBS (Electron Source and Bunching System)
 - 50 MeV && 11nC for positron production
- FAS (the First Accelerating Section)
 - Electron beam to 4 GeV && 10nC for positron production
- PSPAS (Positron Source and Pre-Accelerating Section)
 - Positron beam larger than 200 MeV && larger than 3 nC

- SAS (the Second Accelerating Section)
 - Positron beam to 4 GeV && 3 nC
- DR (Damping Ring)
 - Positron beam 1.1GeV, 60m
- > TAS (the Third Accelerating Section)
 - Positron beam to 10 GeV && 3 nC

Introduction

Layout of Linac

- ESBS (Electron Source and Bunching System)
 - 50 MeV && 3 nC
- FAS (the First Accelerating Section)
 - Electron beam to 4 GeV && 3 nC

- EBTL (Electron Bypass Transport Line)
 - Electron beam @ 4 GeV && 3 nC
- > TAS (the Third Accelerating Section)
 - Electron beam to 10 GeV && 3 nC

Introduction

Layout of Linac

Introduction

- Main parameters
- Layout of Linac

➢Source design

- Electron source
- Positron source

►Linac design

- Electron/Positron mode
- Error study

Summary

Source design

Electron source

>Thermionic Triode electron gun

Sub-harmonic pre-buncher

- 142.8375 MHz
- 571.35 MHz
- Buncher & AO
 - 2856.75 MHz

➢ Emittance

~ 11 nC for positron <100 mm-mrad (Norm.Rms) @11nC

Transmission

• ~90%

Source design

Positron source

Position (mm)

► Layout of positron source

- Target (Conventional)
 - ✓ tungsten@15 mm✓ Beam size: 0.5 mm
- Electron Beam
 - ✓ 4GeV/10nC/100Hz
 - ✓ Beam power 4kW
- Energy deposition
 - ✓ 0.784 GeV/e- @ FLUKA
 - ✓ 784 W \rightarrow water cooling
- AMD (Adiabatic Matching Device)
 - ✓ Flux Concentrator
 - ✓ Length: 100mm
 - ✓ Aperture: 8mm→26mm
 - ✓ Magnetic field: (5.5T→0T) + 0.5T

SLED SLED SLED >200 MeV Target 4 GeV Electron 22 MV/m Capture accelerating structure Flux Concentrate Solenoid Chicane Energy=2 GeV Energy=3 GeV 1,5 Energy=4 GeV @ target (£ 0.5 width N_e+/N_e--0.5 -0.2 1.2 1.4 1.6 10 15 20 Position (cm) Target length (mm) ωza 20 40 60 80 100

Source design

Positron source

50

Input phase (degree)

100

150

- Capture & Pre-accelerating structure
 - ✓ Length:2 m
 - ✓ Aperture: 25 mm
 - ✓ Gradient: 22 MV/m
- Chicane
 - ✓ Wasted electron separation
- Norm. RMS. Emittance
 - \checkmark ~2400 mm-mrad \rightarrow ~120nm@10GeV
- Energy: >200 MeV
- Positron yield

✓ Ne+/Ne- > 0.5 @ [-8°,12°,235MeV,265MeV]

0.04

0.03

0.02

0.01

220

200

0.2

-200

-150

-100

240 260 280 Energy (MeV)

(mrad)

Υp

-10

0

Y(mm)

10

0

Phase (deg)

(Mex) 250

ш 240

-10

>Introduction

- Main parameters
- Layout of Linac

Source design

- Electron source
- Positron source

➢Linac design

- Electron/Positron mode
- Error study

Electron linac

- Focusing device: Triplet
 - 1 triplet+4 Acc. Stru. \rightarrow 1 triplet+8 Acc. Stru.
- Operation mode :
 - High charge mode (positron production)
 - 4GeV & 10 nC
 - ESBS+FAS
 - Low charge mode (electron injection)
 - 10 GeV & 3 nC
 - ESBS+FAS+EBTL+TAS

Linac design Electron linac -> Electron injection

➤Low charge mode

- 10 GeV with 3 nC charge
- Energy spread (rms): 0.15%
- Emittance (rms): 5 nm

Linac design Electron linac -> Positron production

1.4

➢ High charge mode

Y(mm)

-1

-2

0.2

0.1

0

-0.1

-0.2

-2

Y(mm)

Yp (mrad)

-2

-1

- 4 GeV with 10 nC charge
- Energy spread (rms): 0.6%

ICHEP2018, July 4-11, COEX, SEOUL, KOREA

T (s)

 $imes 10^{-12}$

Positron linac

- Transverse focusing devices
 - FODO structure at low energy
 - Triplet at high energy

Positron linac

➢ Positron linac

- 10 GeV with 3 nC charge
- Energy spread (rms): 0.16%
- Emittance with DR (rms): 40(H)/24nm(V)

Linac design Misalignment errors with correction

Whole Linac

- One-to-one correction method for both e- and e+
- Errors: Gaussian distribution, 3σ truncated
- Beam orbit
 - <1mm
 - <0.5mm at high energy region

Error description	Unit	Value
Translational error	mm	0.1
Rotation error	mrad	0.2
Magnetic element field error	%	0.1
BPM uncertainty	mm	0.1

Linac design Misalignment errors with correction

- ➤4GeV Electron Linac with high charge
 - Method: First orbit correction + multi-particles simulation
 - Low charge
 - \checkmark Beam orbit can be controlled well
 - High charge
 - \checkmark Misalignments of Acc. Tubes
 - ✓ Wakefield
 - In a real operation, correction is based on multi-particles orbit, so the orbit and emittance growth can be controlled better.

Field errors

- Simulation condition
 - 5000 seeds
 - Accelerating structure
 - phase errors and amp errors
 - 4 accelerating structures in one KLY
 - 3σ--Gaussian

- Energy jitter: 0.2%
- Energy spread < 0.2%
 - Phase errors: 0.5 degree (rms)
 - Grad. errors: 0.5% (rms)

Damping Ring

DR V1.0	Unit	Value
Energy	GeV	1.1
Circumference	Μ	58.5
Repetition frequency	Hz	100
Bending radius	Μ	3.62
Dipole strength B ₀	Т	1.01
U ₀	keV	35.8
Damping time x/y/z	ms	12/12/6
δ ₀	%	0.05
ε ₀	mm.mrad	287.4
Nature σ_z	mm	7 (23ps)
ε _{ini}	mm.mrad	2500
$\varepsilon_{\text{ext x/v}}$	mm.mrad	704/471
$\delta_{\rm ini}/\delta_{\rm ext}$	%	0.3/0.06
Energy acceptance by RF	%	1.0
f _{RF}	MHz	650
V _{RF}	MV	1.8

- Introduction
 - Main parameters
 - Layout of Linac
- Source design
 - Electron source
 - Positron source
- ≻Linac design
 - Electron/Positron mode
 - Error study

➤Summary

- The CEPC linac works with 100 Hz repetition, 10 GeV and one-bunch-perpulse, which can meet the requirements of Booster;
- ➤The linac have the potential to provide positron beam and electron beam with bunch charge larger than 3nC;
- ➢One preliminary damping ring is proposed, the emittance with DR is smaller than 40 nm;
- >Up to now, there's no bottleneck in linac design and further works continues.

Thank you!

ICHEP2018, July 4-11, COEX, SEOUL, KOREA

CEPC Injector Linac design

24

Dynamic aperture with errors

- With only COD corrections, DA is nearly two thirds of bare lattice
- At 120GeV, radiative damping was considered.
- DA requirement @ 10GeV determined by the beam stay clear region
- DA requirement @ 120GeV: 1) H- quantum lifetime, 2) V- re-injection process from the collider in the on-axis injection scheme

	DA requ	iirement	DA results		
	Н	V	Н	V	
$10 \text{GeV} (_{\epsilon x} = _{\epsilon y} = 120 \text{nm})$	4_{σ^x} +5mm	4_{σ^y} +5mm	7.7 ₀ x +5mm	$14.3_{\sigma^{y}} + 5mm$	
120GeV ($\epsilon x=3.57$ nm, $\epsilon y=\epsilon x*0.005$)	$6\sigma^x + 3mm$	$49_{\sigma y}$ +3mm	$21.8\sigma^{x}$ +3mm	779 ₀ y +3mm	

• Requirement for linac emittance: < 150nm, otherwise BSC > beam pipe