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Probing the Nature of Matter with Muons

First accelerators built in 1920s/30s
= Accelerating protons, ions and electrons
Antiproton acceleration in 1980s
= Made possible by stochastic cooling
Muon acceleration?
Muon collider —» excellent Higgs probe
= Suppress synchrotron radiation
= Strong coupling to Higgs
= Potential for very high energy leptons

Neutrino factory - Well-characterised
neutrino source

= Tunable energy

Challenges
= Muons produced as tertiary particle
= Relatively short lifetime

& Science & Technology Facilities Council




Muon Collider and Neutrino Factory
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R&D Programme

= MERIT
= Demonstrated principle of liquid
Mercury jet target
= MuCool Test Area
= Demonstrated operation of RF
cavities in strong B-fields
= EMMA
= Showed rapid acceleration in non-
scaling FFA
= MICE
= Demonstrate ionization cooling
principle
= |ncrease inherent beam brightness

- number of particles in the beam
core
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Amplitude

= Phase space (x, p,, ¥, p,)

= Normalise phase space
to RMS beam ellipse

10000~ u Clean Up tai|S

| = Amplitude is distance of
- muon from beam core

5000 \ .
= Conserved gquantity in
normal accelerators

00 s o s 100 o T a e = |onization cooling
x [mm] amplitude [mm] reduces transverse
momentum spread

= Reduces amplitude

= Mean amplitude ~ “RMS
emittance”
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Muon lonization Cooling Principle

1® ® @ =
dE/dx multiple scattering re-acceleration |

g 4 17

Muons lose longitudinal and transverse momentum
through ionization energy loss in an absorber

= Non-conservative system

= Normalised amplitude decrease

Muons regain only longitudinal momentum in RF cavities

= Qverall, transverse momentum and amplitude is reduced
Multiple scattering degrades the cooling effect

= Mitigate by tight focussing

= Mitigate by choice of low-Z absorber material

Challenge to maintain tight focussing and high acceptance
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Muon lonization Cooling Experiment

Time-of-flight Variable thickness

hodoscope 1 high-Z diffuser Absorber/focus-coil
(ToF 0) module
Upstream Downstream
spectrometer module spectrometer module
MICE Electron
Muon Muon
Beam ) I | Ranger
(MMB) (EMR)
Cherenkov ToF 1
counters Pre shower
(CKoV) Scintillating-fibre (KL)
MlG trackers ToF 2

= Demonstrate high acceptance, tight focussing solenoid
lattice

= Demonstrate integration of liquid hydrogen and lithium
hydride absorbers

= Validate details of material physics models
= Demonstrate ionization cooling principle and amplitude

non-conservation
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Muon lonization Cooling Experiment

Measure muon
position and
momentum

upstream

Measure muon
position and
momentum
downstream

Cool the muon ;
beam using
LiH, LH,, or
polyethylene
wedge
absorbers
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Experimental Site

= Qver 100 collaborators, 10 countries, 30 institutions

= QOperated at Rutherford Appleton Laboratory between
2008 and 2017

= Dedicated transport line bringing pions/muons from ISIS
synchrotron
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MICE Muon Beam line
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= Muon momenta between 120 and 260 MeV/c
= Muon emittance between 2 mm and 10 mm
= Pion impurity suppressed at up to 99 % level

The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment, JINST
7, PO5009 (2012)
Characterisation of the muon beams for the Muon Ionisation Cooling Experiment, EPJ C 73, 10 (2013)

Pion contamination in the MICE muon beam, JINST 11 (2016)
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Magnets
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= Spectrometer solenoids upstream and downstream
= 400 mm diameter bore, 5 coil assembly
= Provide uniform 2-4 T solenoid field for detector systems
= Match coils enable choice of beam focus

= Focus coil module provides final focus on absorber
= Dual coil assembly - possible to flip polarity
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Absorbers

= 65 mm thick lithium hydride absorber

= 350 mm thick liguid hydrogen absorber

= Contained in two pairs of 150-180
micron thick Al windows

= 45° polythene wedge absorber for
longitudinal emittance studies
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Scintillating Fibre trackers

= Tracks form a helix in spectrometer solenoids
= Position of particles measured by 5 stations of scintillating fibres
= Reconstruct helix in two phases

= Pattern recognition to reject noise
= Kalman filter to get optimal trajectory

= Yields momentum and position of particles at reference plane
= A scintillating fibre tracker for MICE, NIM A 659, 2011
= The reconstruction software for the MICE scintillating fibre trackers, J.Inst.11, 2016
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= High precision Time-of-Flight detectors

= Comparison of time-of-Flight with
momentum enables rejection of
impurities
= Threshold Cerenkov detectors provide
rejection of impurities near the
relativistic limit

= KLOE Light and Electron Muon Ranger
provide calorimetry and rejection of
decay electrons in downstream region

= Electron-Muon Ranger (EMR) Performance in the MICE Muon
Beam, JINST 10 P12012 (2015)

Time-of-Flight, Ckov and Calorimetry

Time of fliaht (ng)
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Material physics processes

- |200 Mev/c
] 240 MeV/c
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Measurement of Beam Properties

MICE Frol minary
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Measurement of Beam Properties

i i,
£l Frolminary _ F b MICE Frolminary
gm..!":‘f’!;ﬁ.'.%"‘. H s Frarih wibira nn:%?:'.mc:h. s
. .. E .ot . E3 P
i mf LS 5 e L) anf- - DL OOREEE -
. E L N . 'L
af TuiE ', F . e e Ed wf- . ; o
2 o E 25 auf- .- ;
J (. - " E5 . . ., - is
of- i . -1, a
rxr . . Eo - . 3
- E - l _2of-
a E 5 « Wl d
_af - - . C - af- : ..
T 3 F - . bl
—arfe - - ! b . o _aof- 2.3 I
. . . _mf .. E B _aof- i Rl -
. MICE IndIVI II TS FETTE PR TS TR Fa T WIS NI I I e el Y I P P BT T
o am = © E T T T T o 2} T T Y ET T
= = (uwn] = (]

measures every particle

= Accumulate particles into
a beam ensemble O pops

= Can measure beam
properties with
unprecedented precision

= E.qg. coupling of x-y from
solenoid fields
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Measurement of Emittance

Emittance MICE Data
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= Measure four dimensional beam emittance (mean amplitude)
= Including e.g. x-y coupling terms
= Slice in p, to understand effect of dispersion
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Change in Amplitude Across Absorber
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= No absorber - decrease in number of core muons
= With absorber - increase in number of core muons
= Cooling signal
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Ratio of core densities

No absorber LH2 LiH
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= R, Is ratio of CDF

= Core density increase for LH2 and LiH absorber —» cooling
= More cooling for higher emittances
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Ratio of core densities

Muon cooling is last “in-principle” challenge for neutrino
factory or muon collider R&D

MICE has measured the underlying physics processes that
govern cooling

MICE has made an unprecedented single particle
measurement of particle trajectories in an accelerator
lattice

MICE has made first observation of ionization cooling

Opens the door for high energy muon accelerators as a
probe of fundamental physics
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