

First Demonstration of Ionization Cooling in MICE

Chris Rogers, ISIS
On behalf of the MICE Collaboration
ICHEP18, Seoul

Probing the Nature of Matter with Muons

- First accelerators built in 1920s/30s
 - Accelerating protons, ions and electrons
- Antiproton acceleration in 1980s
 - Made possible by stochastic cooling
- Muon acceleration?
- Muon collider → excellent Higgs probe
 - Suppress synchrotron radiation
 - Strong coupling to Higgs
 - Potential for very high energy leptons
- Neutrino factory → Well-characterised neutrino source
 - Tunable energy
- Challenges
 - Muons produced as tertiary particle
 - Relatively short lifetime

Muon Collider and Neutrino Factory

- Facility
 - High power protons
 - Target → pions
 - Capture → muons
 - Cooling
 - Rapid acceleration
 - Storage ring
- Rapid cooling → ionization cooling

R&D Programme

- Demonstrated principle of liquid Mercury jet target
- MuCool Test Area
 - Demonstrated operation of RF cavities in strong B-fields
- EMMA
 - Showed rapid acceleration in nonscaling FFA
- MICE
 - Demonstrate ionization cooling principle
 - Increase inherent beam brightness
 → number of particles in the beam core
 - "Amplitude"

Amplitude

- Phase space (x, p_x, y, p_y)
- Normalise phase space to RMS beam ellipse
 - Clean up tails
- Amplitude is distance of muon from beam core
 - Conserved quantity in normal accelerators
- Ionization cooling reduces transverse momentum spread
 - Reduces amplitude
- Mean amplitude ~ "RMS emittance"

Muon Ionization Cooling Principle

- Muons lose longitudinal and transverse momentum through ionization energy loss in an absorber
 - Non-conservative system
 - Normalised amplitude decrease
- Muons regain only longitudinal momentum in RF cavities
 - Overall, transverse momentum and amplitude is reduced
- Multiple scattering degrades the cooling effect
 - Mitigate by tight focussing
 - Mitigate by choice of low-Z absorber material
- Challenge to maintain tight focussing and high acceptance

Muon Ionization Cooling Experiment

- Demonstrate high acceptance, tight focussing solenoid lattice
- Demonstrate integration of liquid hydrogen and lithium hydride absorbers
- Validate details of material physics models
- Demonstrate ionization cooling principle and amplitude non-conservation

Muon Ionization Cooling Experiment

Measure muon position and momentum upstream

Measure muon position and momentum downstream

Beam

Cool the muon beam using LiH, LH₂, or polyethylene wedge absorbers

Experimental Site

- Over 100 collaborators, 10 countries, 30 institutions
- Operated at Rutherford Appleton Laboratory between 2008 and 2017
- Dedicated transport line bringing pions/muons from ISIS synchrotron

MICE Muon Beam line

- Muon momenta between 120 and 260 MeV/c
- Muon emittance between 2 mm and 10 mm
- Pion impurity suppressed at up to 99 % level

The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment, JINST 7, P05009 (2012)

Characterisation of the muon beams for the Muon Ionisation Cooling Experiment, EPJ C 73, 10 (2013) Pion contamination in the MICE muon beam, JINST 11 (2016)

Magnets

- Spectrometer solenoids upstream and downstream
 - 400 mm diameter bore, 5 coil assembly
 - Provide uniform 2-4 T solenoid field for detector systems
 - Match coils enable choice of beam focus
- Focus coil module provides final focus on absorber
 - Dual coil assembly possible to flip polarity

Absorbers

- 65 mm thick lithium hydride absorber
- 350 mm thick liquid hydrogen absorber
 - Contained in two pairs of 150-180 micron thick Al windows
- 45° polythene wedge absorber for longitudinal emittance studies

Scintillating Fibre trackers

- Tracks form a helix in spectrometer solenoids
- Position of particles measured by 5 stations of scintillating fibres
- Reconstruct helix in two phases
 - Pattern recognition to reject noise
 - Kalman filter to get optimal trajectory
- Yields momentum and position of particles at reference plane
- A scintillating fibre tracker for MICE, NIM A 659, 2011
- The reconstruction software for the MICE scintillating fibre trackers, J.Inst.11, 2016

Time-of-Flight, Ckov and Calorimetry

- High precision Time-of-Flight detectors
 - Comparison of time-of-Flight with momentum enables rejection of impurities
- Threshold Cerenkov detectors provide rejection of impurities near the relativistic limit
- KLOE Light and Electron Muon Ranger provide calorimetry and rejection of decay electrons in downstream region
- Electron-Muon Ranger (EMR) Performance in the MICE Muon Beam, JINST 10 P12012 (2015)

Material physics processes

- Energy loss and multiple Coulomb scattering underlie ionization cooling emittance decrease
- Precision measurement of multiple coulomb scattering
 - See next talk
- Validation of energy loss model

Measurement of Beam Properties

 σ_{xx}^2

 \boldsymbol{x}

- MICE individually measures every particle
- Accumulate particles into a beam ensemble
- Can measure beam properties with unprecedented precision

Measurement of Beam Properties

 σ_{xx}^2

x

- MICE individually measures every particle
- Accumulate particles into a beam ensemble
- Can measure beam properties with unprecedented precision
- E.g. coupling of x-y from solenoid fields

Measurement of Emittance

- Measure four dimensional beam emittance (mean amplitude)
 - Including e.g. x-y coupling terms
 - Slice in p_z to understand effect of dispersion

Change in Amplitude Across Absorber

- No absorber → decrease in number of core muons
- With absorber → increase in number of core muons
 - Cooling signal

Ratio of core densities

- R_{amp} is ratio of CDF
- Core density increase for LH2 and LiH absorber → cooling
- More cooling for higher emittances

Ratio of core densities

- Muon cooling is last "in-principle" challenge for neutrino factory or muon collider R&D
- MICE has measured the underlying physics processes that govern cooling
- MICE has made an unprecedented single particle measurement of particle trajectories in an accelerator lattice
- MICE has made first observation of ionization cooling
- Opens the door for high energy muon accelerators as a probe of fundamental physics

