Status of SuperKEKB phase-2 commissioning

Akio Morita
SuperKEKB Commissioning Group

ICHEP 2018

What is SuperKEKB

- 3rd generation B-factory for Belle-II experiment
- Asymmetric energy e⁻-e⁺ double ring collider

2017/September/1	LER	unit		
E	4.000 e ⁺	7.007	GeV	
I	3.6	2.6	Α	
Number of bunches	2,5			
Bunch Current	1.44	1.04	mA	
Circumference	3,01	m		
ϵ_x/ϵ_y	3.2(1.9)/8.64(2.8)	4.6(4.4)/12.9(1.5)	nm/pm	():zero current
Coupling	0.27	0.28		includes beam-beam
βx*/βy*	32/0.27	25/0.30	mm	
Crossing angle	8	mrad		
α_p	3.20×10 ⁻⁴	4.55×10 ⁻⁴		
σδ	7.92(7.53)x10 ⁻⁴	6.37(6.30)×10 ⁻⁴		():zero current
Vc	9.4	15.0	MV	
σ _z	6(4.7)	5(4.9)	mm	():zero current
Vs	-0.0245	-0.0280		
v_x/v_y	44.53/46.57	45.53/43.57		
U ₀	1.76	2.43	MeV	
$\tau_{x,y}/\tau_s$	45.7/22.8	58.0/29.0	msec	
ξ _x /ξ _y	0.0028/0.0881	0.0012/0.0807		
Luminosity	8x:	cm ⁻² s ⁻¹		

Design for 40times luminosity of KEKB B-factory

 $- 1/20 \beta_{y}^{*}$

- Double storage beam current

Using 'nano-beam' schem (large Piwinski angle collision)

Design parameter table from http://www-superkekb.kek.jp/

What is SuperKEKB Phase-2

- Configuration for beam collision test
- Major changes from Phase-1
 - Install Superconducting final focus quadrupole doublets(QCS)
 - Install Belle-II detector except near beam-pipe vertex detector
 - Beam background monitors are installed instead of missing detectors.
 - Introduction of damping ring for low emittance positron beam
 - Update LER injection system to match beam from damping ring

Purpose of Phase-2 Commissioning

- Verification of 'nano-beam' scheme
 - Confirm luminosity increase by squeezing β_y^* even though β_y^* is smaller than bunch length σ_z .
 - Need squeezing β_v^* down to about 3mm(almost half of bunch length).
 - Achieve specific luminosity ~ 2 x 10³¹ cm⁻²s⁻¹/mA²
 - Achieve luminosity ~ 10³⁴ cm⁻²s⁻¹ (design value of KEKB B-factory)
- Beam background study for Belle-II detector
 - Understand background sources: coulomb, breams, Touschek, injection noise, ...
 - Control beam background by collimators and operation conditions.
- Stable operation
 - Keep stable beam collision.
 - Prevent QCS(superconducting final focus doublets) quench.

Luminosity & β_y* dependency

Luminosity is defined as follows:

$$L = \frac{N_{-} N_{+} nb f_{rev}}{2 \pi \sqrt{(\sigma_{x-}^{*2} + \sigma_{x+}^{*2})(\sigma_{y-}^{*2} + \sigma_{y+}^{*2})}}$$

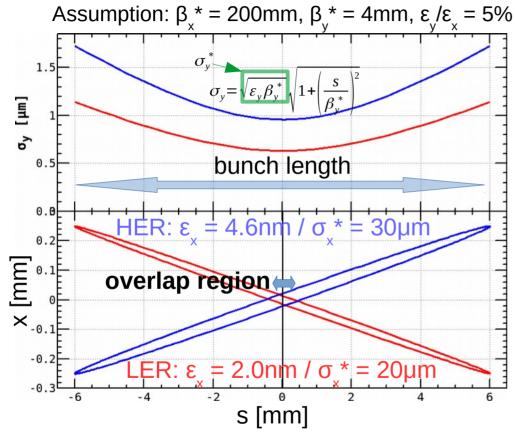
 N_{\pm} is # of particles in bunch nb is # of bunches

 $\sigma_{\scriptscriptstyle X-}^* = \sigma_{\scriptscriptstyle X+}^* \sim \sigma_{\scriptscriptstyle Z} \phi_{\scriptscriptstyle X}$, $\sigma_{\scriptscriptstyle V+}^* = \sqrt{\epsilon_{\scriptscriptstyle V+} \beta_{\scriptscriptstyle V}^*}$

 f_{rev} is revolution frequency $\Phi_{\tilde{y}}$ is half crossing angle

Simplify with following assumptions:

$$L = \frac{f_{rev}}{2 \pi \sqrt{2} \sigma_z \phi_x} \frac{N_- N_+ nb}{\sqrt{(\epsilon_{v-} + \epsilon_{v+})\beta_v^*}}$$


Beam-beam parameter is described as follows with assumption $\sigma_{x\pm}^* \sim \sigma_z \phi_x \gg \sigma_{y\pm}^* = \sqrt{\epsilon_{y\pm} \beta_y^*}$

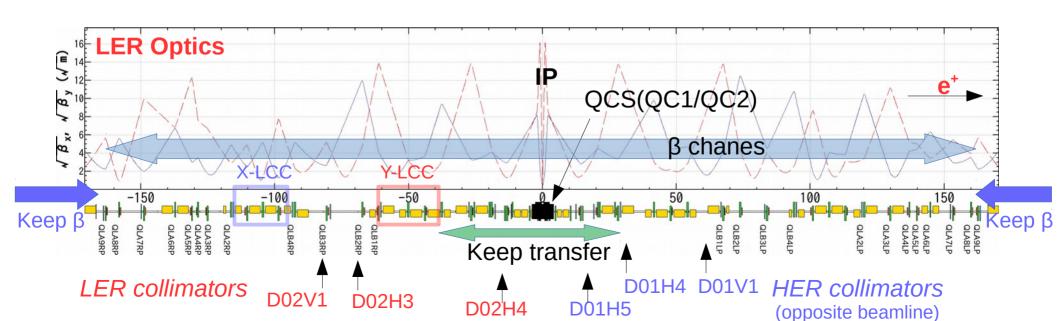
$$\xi_{\pm} \simeq \frac{r_e}{2\pi \gamma_{\pm}} \frac{N_{\mp} \beta_{y\pm}^*}{\sigma_z \phi_y \sqrt{\epsilon_{y\pm} \beta_{y\pm}^*}} = \frac{r_e}{2\pi \gamma_{\pm}} \frac{N_{\mp}}{\sigma_z \phi_x} \sqrt{\frac{\beta_y^*}{\epsilon_y \mp}} \quad \text{where} \quad \beta_{y\pm}^* = \beta_y^*$$

If vertical emittance is conserved at squeezing β_{v}^{*} ,

- Luminosity is proportional to inverse of square-root of β_y^* . $L \propto (\beta_y^*)^{-1/2}$ • Beam-beam parameter becomes weaker as squeezing β_y^* . $\xi_{y\pm} \propto (\beta_y^*)^{+1/2}$
- Luminosity SHOULD increase as squeezing By*.

Bunch Profile & Hourglass Effect

Vertical beam size far from IP is increased by hourglass effect.


In traditional collision scheme, average vertical beam size is blowing up in case of $\beta_v^* << \sigma_z$.

In 'nano-beam' scheme, longitudional overlap region becomes shorter by reducing horizontal beam size and such short longitudional overlap suppresses hourglass effect.

Effective interaction length: $\sigma_z \rightarrow d = \frac{\sigma_x^*}{\sin(\phi_x)}$ ϕ_x is half crossing angle

How to control beta-function

- We are detuning/squeezing β^* by using matching section quadrupoles: QLA & QLB.
 - Transfer matrix between IP and vertical local chromaticity corrector(Y-LCC) is not changed.
 - But, phase advance of IR section is changed by squeezing. (Need to rematch tune control section)

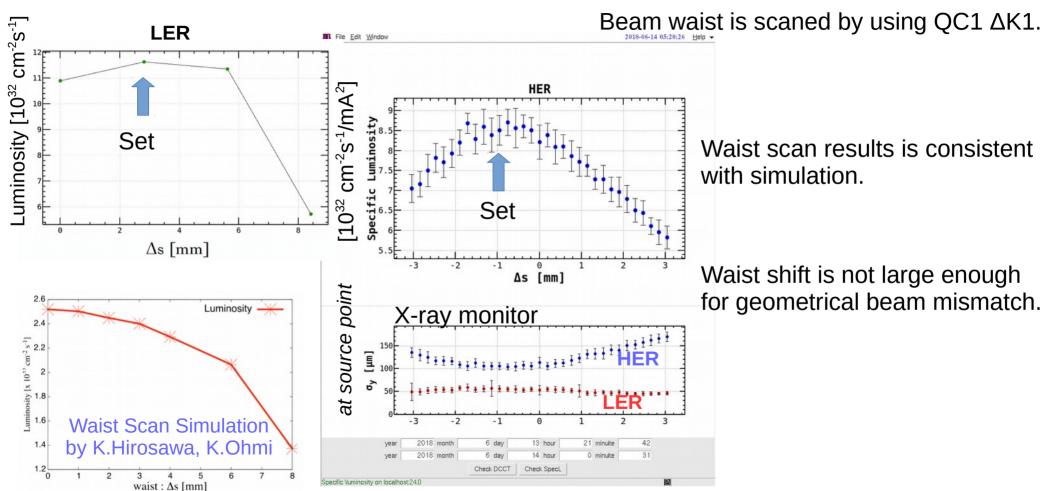
Beta Squeezing

Phase	βx* [[mm]	By*	[mm]	State	L _{peak} cm ⁻² s ⁻¹	I _{LER} /I _{HER} , nb [mA]	Start
	LER	HER	LER	HER				
2.0	384	400	48.6	81	Detuned for Beam Capture			
2.1.0	20	00	8	3	Collision	9.3×10^{32}	250/220, 600	04/16
2.1.1	20	00	6	6	Collision	13.7 x 10 ³²	340/285, 789	05/22
2.1.2	20	00	4	1	Collision	13.6 x 10 ³²	340/285, 789	05/28
2.1.3	20	00	4	3	Collision	13.2 x 10 ³²	240/285, 789	06/08
2.1.4	20	00	3	3	Collision	10.5 x 10 ³²	320/265, 789	06/11
2.1.5	10	00	4	4	Collision	10.9 x 10 ³²	340/285, 789	06/12
2.1.6	200	100	4	4	Collision	19.0 x 10 ³²	340/285, 789	06/13
2.1.7	200	100	3	3	Collision	26.6 x 10 ³²	340/285, 789	06/20
2.2.0	20	00	2	2	Optics Correction			06/07
2.3.0	10	00	2	2	Not achieved			

QCS Quenchs in β_y^* Squeezing

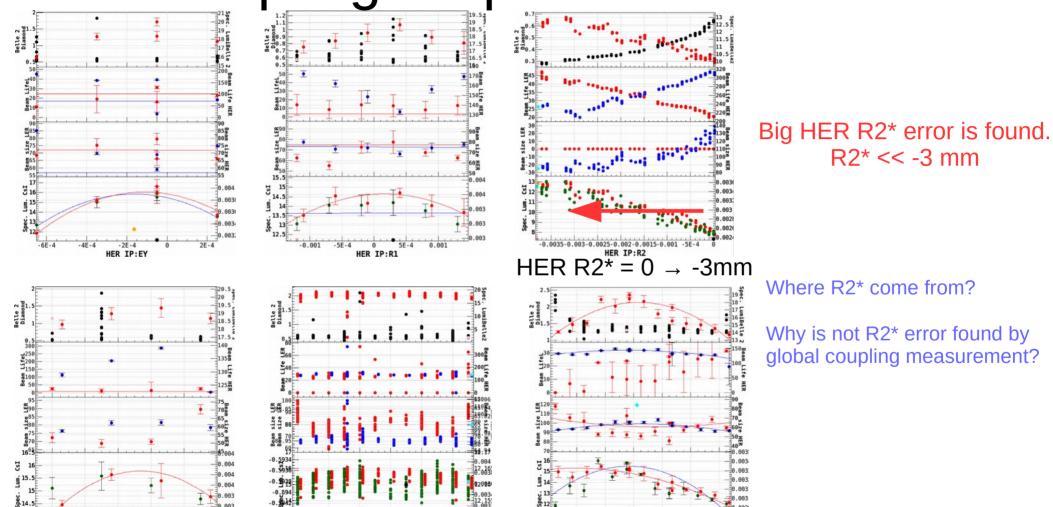
- We have many QCS quenches during early stage of β_y^* squeezing.
 - It blocks our study. (Typical recovery time 2 hours)
 - Quench is mainly occured in QC1(vertical final focus quadrupole).
 - It would be caused by beam loss due to increased β_{v} at QC1.
- We make two workarounds.
 - Use beam collimator to protect QCS.
 - Link Belle-II diamond background detector to beam abort system for aborting beam before QCS quench by detecting beam loss near QCS.

After applying workarounds, we squeeze β_y^* from 4mm to 2mm without QCS quenches.


Unscaled Luminosity at Squeezing

- Luminosity does not increase at squeezing β_y^* from 6mm to 4mm.
- Vertical beam size measured by X-ray monitor is shrinked as decaying beam current, however, specific luminosity does not increase.
 - While HER vertical beam size was shrinking by factor 3 due to beam current decay, specific luminosity was kept almost constant.
- We found discrepancy between vertical beam size of beam-beam scan and X-ray monitor measurements.
 - Beam-Beam scan size: $\sigma_{y \text{ scan}}^* = 1.2 \mu \text{m}$
 - X-ray monitor size: $\sigma_y^* \sim 0.4/0.5 \mu m(LER/HER)$

Geometrical missmatch between two beams is suspected.


Need to check geometrical error at IP: waist, R1*, R2*, η_v^* , ...

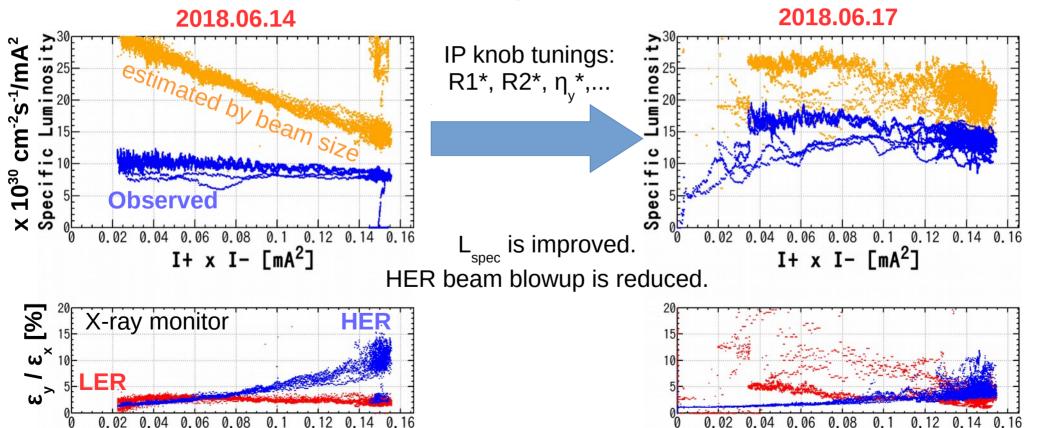
Waist Scan

Waist scan results is consistent with simulation.

Waist shift is not large enough for geometrical beam mismatch. IP Coupling/Dispersion Knob Scan

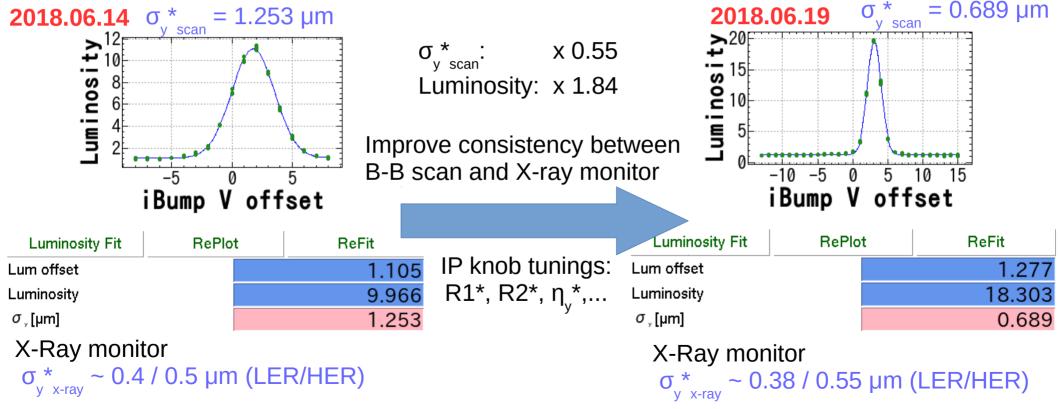
LER IP R2 (mm)

LER IP:R1

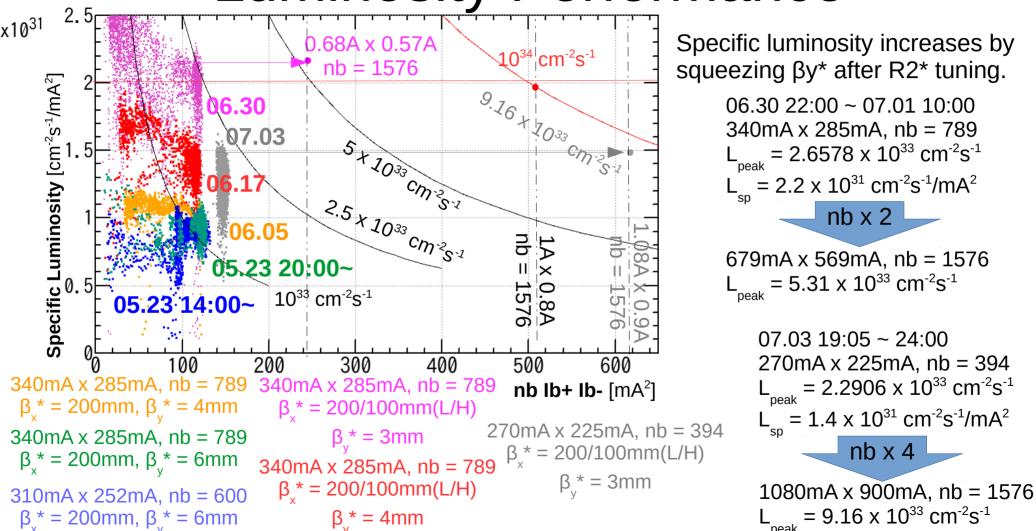

LER IP:EY

HER R2* Knob Issue

- Scan range is limited by power supply of skew quadrupole winding on arc sextupoles. (± 3mm typ.)
 - ±3mm scan range is not enough to find luminosity peak.
- Knob height already exceeds perturvative region.
 - R2* knob side effect makes vertical emittance growth.
- Another R2* tunings:
 - Reintroduce orbit knob by using vertical orbit bump at arc sextupole pairs used in KEKB B-factory.
 - Vertical orbit bump for HER arc section is acceptable, because of old coppor round vacuum chamber.
 - Correct R2* by using QCS skew quadrupole corrector to avoid vertical dispersion generation by large skew quadrupole/orbit bump R2* knobs.

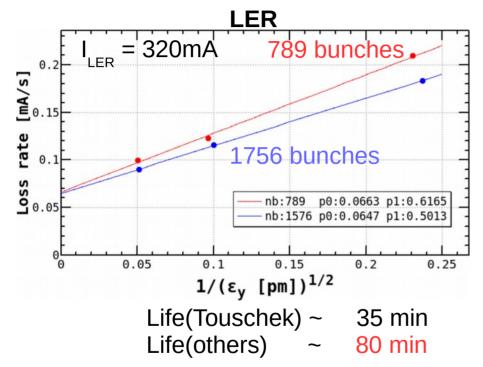

Specific Luminosity before & after IP coupling knob tuning

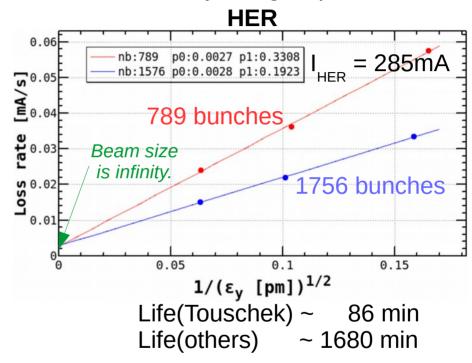
Phase 2.1.6: $\beta_x^* = 200/100$ mm(LER/HER), $\beta_y^* = 4$ mm, I = 340/285mA(LER/HER), nb = 789



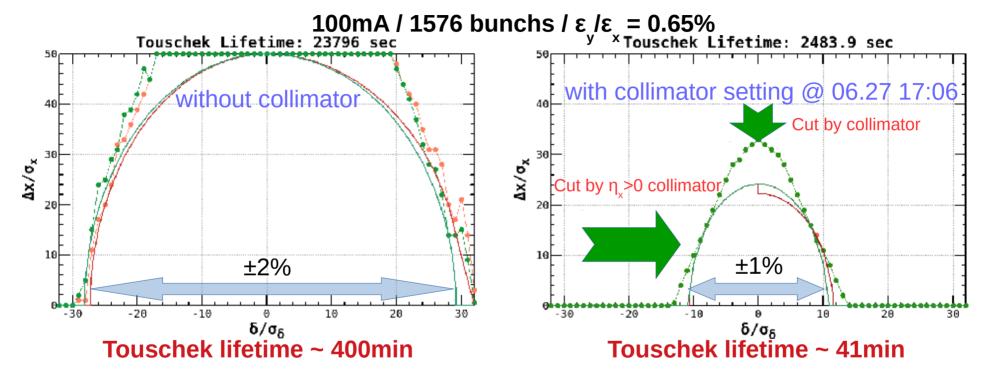
Beam-beam scan before & after IP coupling knob tuning

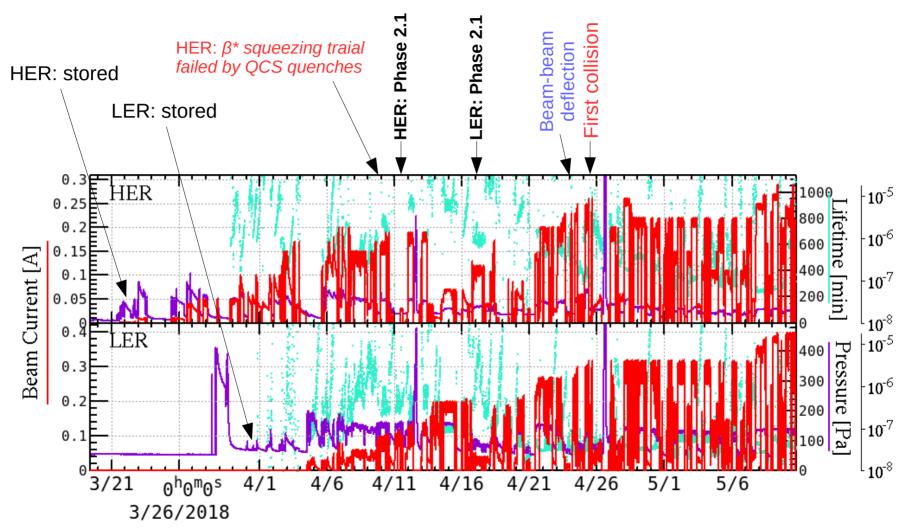
Phase 2.1.6: $\beta_x^* = 200/100$ mm(LER/HER), $\beta_y^* = 4$ mm, I = 15/15mA(LER/HER), nb = 1576



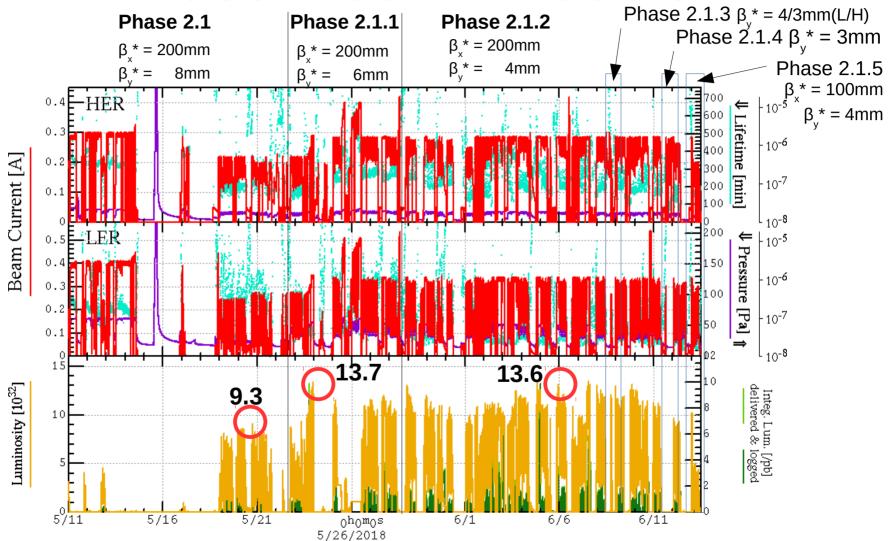

Luminosity Performance

Beam Lifetime Measurement

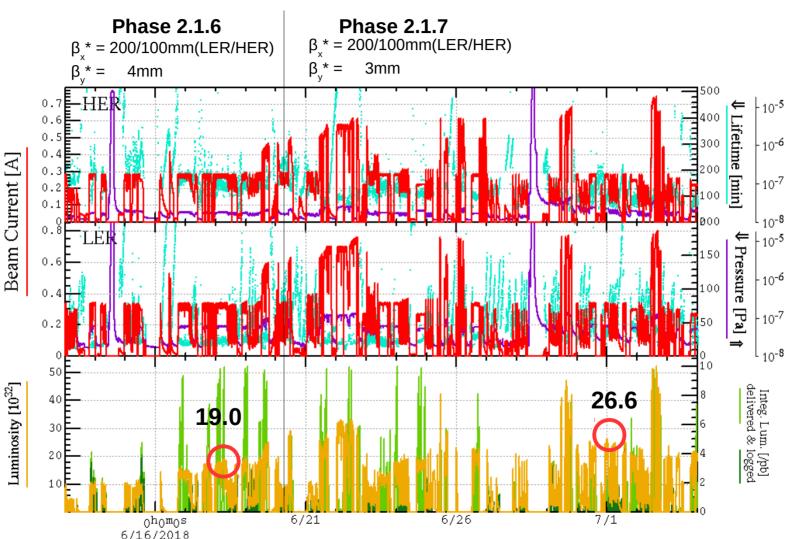

Loss rate measurement with vertical emittance control knob by using dispersion.


 LER lifetime(others) is too short if it is vacuum lifetime.

LER Lifetime Simulation



 Simulation with collimator is consistent with measurements: loss rate measurement & momentum acceptance survey.


Phase2: 03.19 ~ 05.11

Phase2: 05.11 ~ 06.13

Phase2: 06.13 ~ 07.03

Beam Currents and Beam Dose

Achievements in Phase-2

- Maximum Stored Current: 788/745mA(LER/HER) with collision
- Beam Dose: 291/299Ah(LER/HER)
- Squeezing β_v^* down to 3mm(collision) / 2mm(single beam)
- $L_{peak} \sim 5.3886 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$ @ 2018.07.02 15:21 JST
 - I ~ 788/745mA(LER/HER), nb = 1576, β_x^* = 200/100mm(LER/HER), β_y^* = 3mm
- $L_{peak} \sim 2.6678 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$ @ 2018.06.30 23:51 JST
 - I ~ 340/285mA(LER/HER), nb = 789, β_x^* = 200/100mm(LER/HER), β_y^* = 3mm
- $L_{spec} \sim 2.2 \times 10^{31} \text{ cm}^{-2}\text{s}^{-1}/\text{mA}^2$ @ 2018.06.30 22:40 JST
 - I ~ 340/285mA(LER/HER), nb = 789, $\beta x^* = 200/100$ mm(LER/HER), $\beta y^* = 3$ mm
- $\sigma_{v \text{ scan}}^* \sim 0.333 \mu \text{m}$ @ 2018.06.29 22:40
 - I ~ 15/15mA(LER/HER), nb = 1576, β_x^* = 200/100mm(LER/HER), β_y^* = 3mm

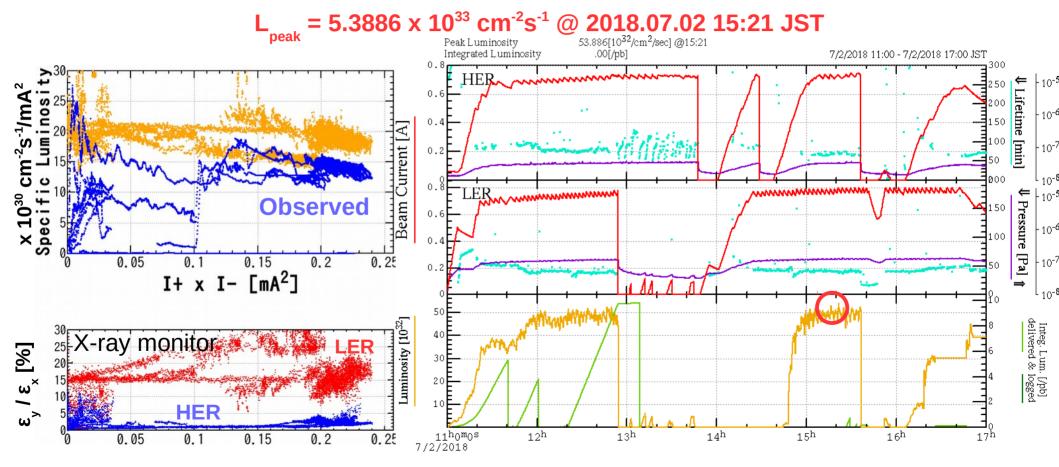
Summary

Seueezing beta function issues

- We have squeezed beta function at IP down to 2 mm for both rings. (optics correction)
- We have achieved collision operation with β_y^* = 3mm and luminosity is not limited by hourglass effect at this β_y^* .

Luminosity optimization issues

- We found large R2 error at IP and it makes geometrical luminosity loss.
 - Trying to correct R2 error at IP by using QCS skew quadrupole, because it it too large to adjust by IP coupling/dispersion knob.
 - Need to identify error source and feedback to optics modeling.
- Need to reduce beam-beam blowup.
- Need more coupling/dispersion correction for reducing vertical emittance.


Lifetime issues

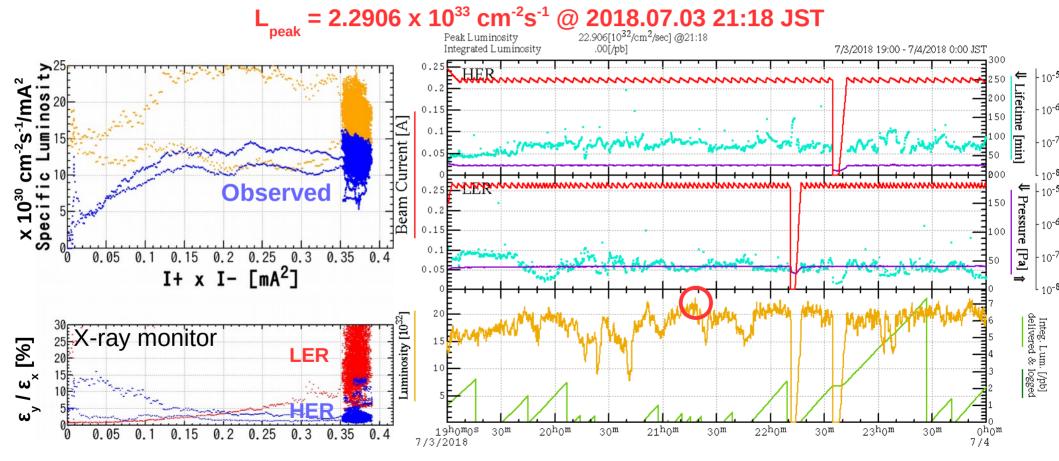
- We identify that short LER beam lifetime is caused by too tight horizontal collimator setting.
 - Need collimator optimization under trade-off between lifetime and Belle-II background.
 - Option: Introduce dispersion free horizontal collimator
- Need sextupole paramer optimization for longer lifetime and weaker synchro-beta resonance lines.

Backup Slides

Highest Luminosity

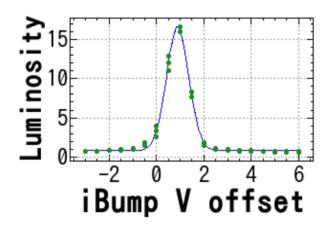
Phase 2.1.7: $\beta x^* = 200/100$ mm(LER/HER), $\beta y^* = 3$ mm, I = 788/745mA(LER/HER), nb = 1576

Best Luminosity (medium bunch current)


Phase 2.1.7: $\beta x^* = 200/100$ mm(LER/HER), $\beta y^* = 3$ mm, I = 340/285mA(LER/HER), nb = 789

= 2.6578 x 10³³ cm⁻²s⁻¹ @ 2018.06.30 23:51 JST

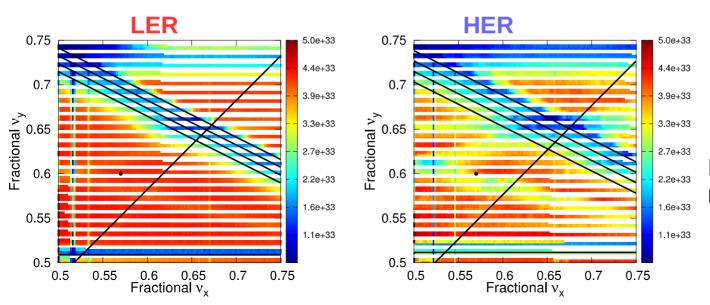
Peak Luminosity* 26.578[10³²/cm²/sec] @23:51 6/30/2018 22:00 - 7/1/2018 10:00 JST **Observed** 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 $I + x I - [mA^2]$ X-ray monitor 0^{h_0m} 6/30/2018


Best Luminosity(high bunch current)

Phase 2.1.7: $\beta x^* = 200/100$ mm(LER/HER), $\beta y^* = 3$ mm, I = 270/225mA(LER/HER), nb = 394

Smallest Beam-Beam Scan Size

Phase 2.1.7: $\beta x^* = 200/100$ mm(LER/HER), $\beta y^* = 3$ mm, I = 15/15mA(LER/HER), nb = 1576 measured at 2018.06.29 22:40 JST

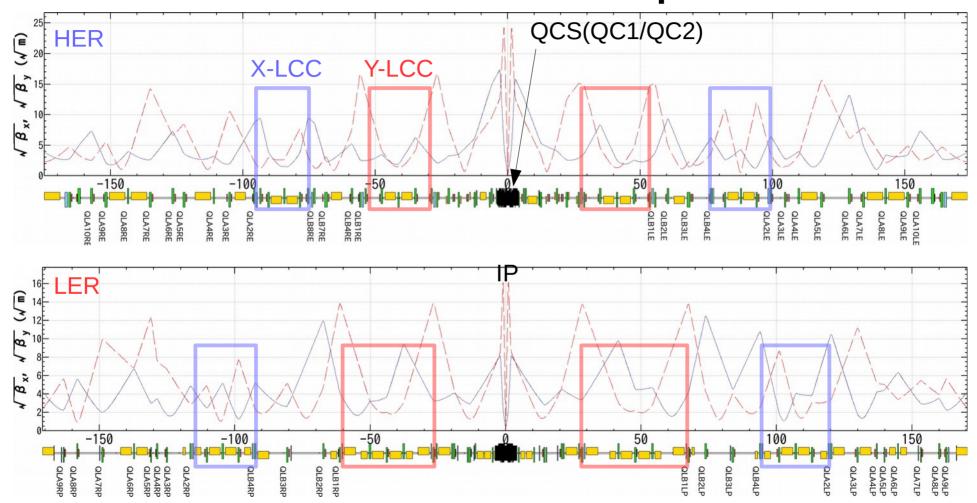


$$\sigma_{y \text{ scan}}^* = 0.333 \ \mu \text{m}$$

Luminosity Fit	RePlot	ReFit	
Lum offset		0.827	
Luminosity		15.811	
$\sigma_{_{\scriptscriptstyle y}}$ [µm]		0.333	

Betatron Tune Working Point

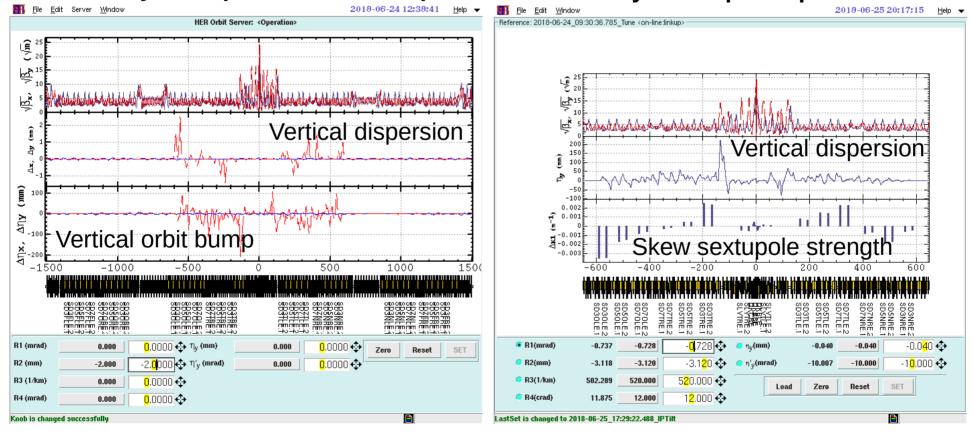
- Stable region of betatron tune looks like smaller than current dependent tune shift.
- Many synchro-beta resonance lines are observed in operation and it affects beam size, lifetime, and luminosity.
- We need more tune survey and sextupole paramter survey for stable operation.
 - Tune feedback system is required to help operator.


Luminosity simulation(ws) by D.zhou.

HER stable region looks like narrow compared with LER.

Horizontal Waist(QC2 Waist)

- Large (~100mm) HER β_x waist shift is predicted from analysis of β -function measument results.
- Waist tuning by QC2 improves HER beam size, however, luminosity improvement is not clear.
 - It seems that LER beam becomes relatively weaker.
- Why is HER β_{v} waist shift larger than LER's one?
 - Is it depending with IR structure? (HER QC2 geometry is asymmetric.)
 - Does this waist shift affect Belle-II beam background?


Phase 2.1.7 IR Optics

HER IP Coupling/Dispersion Knob

by sextupole vertical bump

by skew quadrupole

- Injection background
 - The injection noise has been reduced with both of injection tuning and collimator tuning.
 - The optics changes frequently due to beta squeeing, so the tuning procedure is repeated when the optics changes.
- Synchrotron radiation
 - SR is observed by PXD which is larger than simulations.
- Vacuum
 - vacuum background decreases as increasing beam dose.
- Touschek effect
- Radiative Bhabha (not seen due to low luminosity)
- Beam tail
 - Hits at s = \sim 220 mm cannot be beam tail because beam-stay-clear is 110 σ .