

Results from the CUORE experiment

Stefano Pozzi Università/INFN Milano-Bicocca

ICHEP 2018, 4-11 July 2018, Seoul (S. Korea)

CUORE

- Cryogenic Underground Observatory for Rare Events
- Main objective: 0νββ in ¹³⁰Te
- > 988 TeO₂ crystals, 5x5x5 cm³ each
- Total mass: 742 kg TeO₂ (natural Te)
- > 130Te mass: 206 kg
- Crystals operated as bolometers in a cryostat capable of reaching T < 10mK

CUORE: sensitivity

$$T_{1/2}^{0\nu}(n_{\sigma}) \propto \sqrt{\frac{M \cdot t}{b \cdot \Delta E}}$$

Goals

 $\rightarrow \Delta E$: 5 keV FWHM @Q_{ββ}

> *b* : 0.01 counts/(keV⋅kg⋅y)

t: 5 years livetime

Median expected sensitivity:

 $T_{1/2}^{0v} > 9 \times 10^{25} \text{ yr (90\% C.L.)}$

TeO₂

- → High natural isotopic abundance
 of source isotope (¹³⁰Te)
- → 130 Te included in the detector: high efficiency
- $Arr Q_{ββ}$ = 2527.5 keV, in a region with relatively low β/γ background
- Excellent energy resolution
 (5 keV FWHM @ Q_{ββ})
- Reproducible growth of high quality crystals

Detector principle

- Energy deposition converted into a temperature rise: A ∞ E/C(T)
- Need to work at extremely low temperature, as C(T)∞T³
- > Signal readout with an NTD Ge sensor $R_{NTD} \propto exp(1/T^{1/2})$
- Heat dissipated to the Cu holder; base temperature restored in a few seconds

CUORE Cryostat

- Material selection driven by thermal/mechanical properties and radio-purity
- ✓ Special surface cleaning procedures for elements close to the detector
- Shielding: 25 cm Pb @300K + 6 cm roman Pb @4K
- Mixing Chamber Shield (0.01K) ✓ Extremely low vibrations (suspensions)

Detector installation

Detector installation

Installation of thermal and radiation shields, electronics and DAQ completed between Sep. and Nov. 2016

Pre-operation

First pulses recorded on Jan. 2017

- Solution > Gradually turned on all the 988 channels
- Optimization of the DAQ and data analysis software
- Improvement of noise, both from electronics and from vibrations (pulse tubes)
- Determination of the optimal working point for each crystal

End of commissioning in April 2017

Physics data taking started in May 2017

Calibration system

- > The detector calibration system (DCS) consists of 12 strings, loaded in ²³²Th, that can be lowered to detector level
- The strings are guided through tubes and positioned as to illuminate evenly all 19 towers
- Calibrations are run at the beginning and end of each dataset

CUORE data taking

- > **86.3 kg·y** exposure accumulated in summer 2017
- > 99.6% active channels (994/988)
- > 92% of channels pass analysis cuts
- > 7.7 keV FWHM @Q-value
- > 80% signal efficiency

- **>** Background index: $(1.4 \pm 0.2) \times 10^{-2} \text{ counts/(keV·kg·y)}$
- > Median expected sensitivity: $T_{1/2}^{0v} = 7.0 \times 10^{24} \text{ y}$
- > Combined limit with CUORE-0 and CUORICINO:

$T_{1/2}^{0v} > 1.5 \times 10^{25} \text{ y (90\% C.L.)}$

CUORE background

- Background generally consistent with expectation
- \triangleright y strongly reduced, α region consistent
- > ²¹⁰Po excess under investigation, irrelevant in ROI (<1%)

CUORE background model

- > Full background reconstruction with a Bayesian fit
- > Fit components: 60 contaminations spread across the cryostat
- Each component is simulated with a detailed Geant4 MC simulation

Volume	Туре	Components
TeO ₂	Bulk	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
TeO ₂	Surface (0.01 μ m)	²³² Th, ²²⁸ Ra- ²⁰⁸ Pb, ²³⁸ U- ²³⁰ Th, ²²⁶ Ra- ²¹⁰ Pb, ²¹⁰ Pb
TeO_2	Surface (1 μ m)	²¹⁰ Pb
TeO ₂	Surface (10 μ m)	²¹⁰ Pb, ²³² Th, ²³⁸ U
CuNOSV	Bulk	²³² Th, ²³⁸ U, ⁴⁰ K, ⁶⁰ Co, ⁵⁴ Mn
CuNOSV	Surface (0.01 μ m)	²¹⁰ Pb, ²³² Th, ²³⁸ U
CuNOSV	Surface (1 μ m)	²¹⁰ Pb, ²³² Th, ²³⁸ U
CuNOSV	Surface (10 μ m)	²¹⁰ Pb, ²³² Th, ²³⁸ U
Roman lead	Bulk	²³² Th, ²³⁸ U, ¹⁰⁸ mAg
Top lead	Bulk	²³² Th, ²³⁸ U, ²¹⁰ Bi
Ext. lead	Bulk	²¹⁰ Bi
CuOFE	Bulk	²³² Th, ²³⁸ U, ⁶⁰ Co
External	-	Cosmic muons

- Split the data according to event multiplicity
- Split the detector in two layers, outer (sensitive to cryostat contaminants) and inner (sensitive to towers)

CUORE background model

We're able to reconstruct the main features of the observed spectra

In CUOREO, 2νββ accounted for about 10% of the events in the 1-2 MeV region...

Ene

Counts/keV

In CUOREO, 2νββ accounted for about 10% of the events in the 1-2 MeV region...

...but now, thanks to the improved background, it accounts for almost 100% of events

$T_{1/2}^{2\nu} = (7.9 \pm 0.1 \text{ (stat.)} \pm 0.2 \text{ (syst.)}) \times 10^{20} \text{ y}$ (Preliminary)

$$T_{1/2}^{2v} = (8.2 \pm 0.2 \text{ (stat.)} \pm 0.6 \text{ (syst.)})x 10^{20} \text{ y} \text{ (CUORE-0)}$$

$$T_{1/2}^{2y} = (7.0 \pm 0.9 \text{ (stat.)} \pm 1.1 \text{ (syst.)}) \times 10^{20} \text{ y} \text{ (NEMO-3)}$$

Summary

- With 7 weeks of data CUORE:
 - > Set the most stringent limit on 0νββ half-life of ¹³⁰Te to date
 - Made the most precise measurement of 2νββ half-life of ¹³⁰Te
- After a period of detector optimization, we restarted data taking in May 2017
- > CUORE will continue taking data in the coming years, with an ultimate sensitivity to $0\nu\beta\beta$ half-life in 130 Te of $T_{1/2}^{0\nu}$ > 9 x 10^{25} yr

