

Spectral Decomposition of Missing Transverse Energy at Hadron Colliders

Tae Hyun Jung (IBS-CTPU)

In collaboration with Kyu Jung Bae and Myeonghun Park arXiv: 1706.04512 Phys. Rev. Lett. 119, 261801 (2017)

DM signals at colliders

	Lepton colliders	Hadron colliders
Incoming particles	Electron/positron	Quarks/gluons inside (anti)proton
Momentum information	All the components	partial (only transverse momentum)
Kinematic variable for DM signal	Missing invariant mass (momentum)	Missing <u>transverse</u> energy(momentum)

DM signals at colliders

		Lepton colliders	Hadron colliders
Incoming	particles	Electron/positron	Quarks/gluons inside (anti)proton
Mome inform	entum lation	All the components	partial (only transverse momentum)
Kinematic for DM	variable signal	Missing invariant mass (momentum)	Missing <u>transverse</u> energy(momentum)
Peak/er	ndpoint	0	X
Easy to read information (mass/interaction)		ead information ceraction)	Template fitting method Large number of templates are needed for every single DM models

(K. J. Bae, M. Park, THJ, PRL 2017)

• It is essentially same with the Fourier transformation.

$$f(x) = \sum_{n} c_n \sin(n\pi x/L)$$

Basis functions: $sin(n\pi x/L)$ w/ n= integer

10

Coefficients: amplitude of each frequency mode

MET dist. of physical process

MET dist. of Virtual Mediator production

Virtual mass: $\{m_{\chi\chi}^{(i)}\}$ given by hand

$$\frac{\mathrm{d}\sigma^{\mathrm{exp}}(X)}{\mathrm{d}X} \simeq \sum_{i=1}^{N} c_i \underbrace{\left(\frac{1}{\mathcal{N}_i} \frac{\mathrm{d}\sigma_{\phi_i}(X)}{\mathrm{d}X}\right)}_{=\mathrm{basis functions}}$$

LHS: from the experiment Basis functions: from the calculation and simulation Coefficients: from chi-square fitting

$$\chi^{2} = \sum_{X_{\text{bin}}} \underbrace{\left(\frac{\text{Ex}(X_{\text{bin}}) - \text{SM}(X_{\text{bin}}) - \sum_{i=1}^{N} c_{i}F_{i}(X_{\text{bin}}) \right)^{2}}{\text{Ex}(X_{\text{bin}})}$$

$$F_{i}(X_{\text{bin}}) = \frac{L}{\mathcal{N}_{i}} \int_{X \in X_{\text{bin}}} dX \frac{d\sigma_{\phi_{i}}(X)}{dX} \quad \text{: binned basis functions}$$

• What is the physical meaning of coefficients?

Physical meaning of c_i is the DM invariant mass distribution.

$$c_i \simeq \frac{\mathrm{d}\sigma_{\mathrm{full}}(m_{\chi\chi})}{\mathrm{d}m_{\chi\chi}} \Delta m_{\chi\chi}^{(i)}$$

Spectral Decomposition: MET space —> DM inv. mass space

Equivalently, C_i are related to Kallen-Lehmann spectral density.

$$c_i = 2m_{\chi\chi}^{(i)} \,\Delta m_{\chi\chi}^{(i)} \,\mathcal{N}_i \,\rho_{\phi\to\chi\chi}(m_{\chi\chi}^{(i)}, M_\phi)$$

Theoretically,
$$\rho_{\phi \to \chi\chi}(m_{\chi\chi}^{(i)}, M_{\phi}) = \frac{1}{\pi} \left| G_{\phi}(m_{\chi\chi}^{(i)}, M_{\phi}) \right|^2 m_{\chi\chi}^{(i)} \Gamma_{\phi_i \to \chi\chi}(m_{\chi\chi}^{(i)})$$

Two merits of spectral density

- 1. **Universality** (independent of production process \rightarrow valid up to detector level)
- 2. Easy to characterize dark sector.

Spectral Density (characterization)

	Mediator	Characterization
Case 1	On-shell($M_\phi > 2m_\chi$)	Resonance
Case 2	Off-shell($M_\phi < 2m_\chi$)	S-wave
Case 3	Off-shell($M_\phi < 2m_\chi$)	P-wave
Case 4	Off-shell($M_\phi < 2m_\chi$)	DM bound state (dark long range force)

 $m_{\chi\chi}$ / m_{χ}

Summary of our method

Lagrangian:
$$\mathcal{L} = \mathcal{L}_{SM} + \underbrace{\mathcal{L}_{med-SM} + \mathcal{L}_{med}}_{\rightarrow basis functions} + \underbrace{\mathcal{L}_{med-DM} + \mathcal{L}_{DM}}_{\rightarrow spectral density}$$

- 1. Fix $\mathcal{L}_{med-SM} + \mathcal{L}_{med}$ and calculate basis functions.
- 2. Obtain coefficients c_i by fitting.

$$\frac{\mathrm{d}\sigma^{\mathrm{exp}}(X)}{\mathrm{d}X} \simeq \sum_{i=1}^{N} c_i \underbrace{\left(\frac{1}{\mathcal{N}_i} \frac{\mathrm{d}\sigma_{\phi_i}(X)}{\mathrm{d}X}\right)}_{=\mathrm{basis \ functions}} \qquad \chi^2 = \sum_{X_{\mathrm{bin}}} \frac{\left(\mathrm{Ex}(X_{\mathrm{bin}}) - \mathrm{SM}(X_{\mathrm{bin}}) - \sum_{i=1}^{N} c_i F_i(X_{\mathrm{bin}})\right)^2}{\mathrm{Ex}(X_{\mathrm{bin}})}$$

3. Find $\mathcal{L}_{med-DM} + \mathcal{L}_{DM}$ that matches with c_i obtained in step 2.

Numerical Example (Mono-jet channel w/ a Simplified Model)

• Simplified DM model

 $\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm med-SM} + \mathcal{L}_{\rm med} + \mathcal{L}_{\rm med-DM} + \mathcal{L}_{DM}$ $\mathcal{L}_{\rm med} = \frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi \left[-\frac{1}{2} M_{\phi}^{2} \phi^{2} \right]$ $\mathcal{L}_{\rm med-SM} = \frac{k}{\Lambda} \phi G^{a\mu\nu} G^{a}_{\mu\nu}$ $\mathcal{L}_{\rm DM}^{(s)} = \frac{1}{2} \partial_{\mu} s \partial^{\mu} s - \frac{1}{2} m_{s}^{2} s^{2}$ $\mathcal{L}_{\rm med-DM}^{(s)} = \frac{1}{2} m_{s} g_{s} \phi s^{2}$ $\mathcal{L}_{\rm DM}^{(f)} = \bar{\chi} (i \partial - m_{\chi}) \chi$ $\mathcal{L}_{\rm med-DM}^{(f)} = \frac{1}{2} \phi \bar{\chi} \chi$ $\rightarrow \text{ fermionic dark matter}$

: Assumption : what we can obtain from data (results)

Example (step 1: calculate basis functions)

- Colored curves: basis functions
- {m⁽ⁱ⁾_{\chickleft\chic}

Example (step 2: obtain coefficients by fitting)

- Signal: dotted lines (left: s-wave, right: p-wave, DM mass= 200 GeV)
- Basis functions: shaded by color
- Coefficients: obtained by chi square fitting = area of each colored region = DM inv. dist.

Example (step 3: the interpretation of results)

Conclusion

We can obtain DM invariant mass distribution even at hadron colliders by using the spectral decomposition.

From the obtained DM invariant mass distribution, we can easily extract DM information.

Thank you!

Comment on the choice of virtual mass

For a successful decomposition, we need enough distinguishability of basis functions.

Distinguishability = **linear independence** of basis functions (Statistical fluctuation can spoil their linear independence!)

$$\min_{d_j} \left[\sum_{X_{\text{bin}}} \left(N_s F_i(X_{\text{bin}}) - \sum_{j \neq i} d_j F_j(X_{\text{bin}}) \right)^2 / \text{Ex}(X_{\text{bin}}) \right] \ge \epsilon$$

Previous example (S/B=1/100): ϵ =7.01 with d.o.f=6 -> 80% C.L. to decompose successfully. To increase the confidence level, we need smaller number of basis functions, larger gap between virtual masses, or more signal events.

linear independence = resolution of DM inv. mass

Back Up

Proof

• Decomposition is guaranteed by following equations if the mediator is schannel.

(Partial spectral density)

Proof

Decomposition is guaranteed by following equations if the mediator is s-• channel.

Luminosity function (pT distribution)

