Monojet signatures at the High-Luminosity and High-Energy LHC

arXiv 1805.05346 Mihoko Nojiri (KEK, IPMU)

With Amit Chakraborty(KEK)
Silvan Kuttimalai (SLAC) ←Sherpa
Sung Hak Lim (KEK)
Richard Ruiz (IPPP, Durham) ←Madgraph

Dark matter from colored particle decay

- A class of model with Pair production of colored particle followed by the decay p p → QQ Q→ X + jets or lepton
- ❖ Q can be anything: **top partner T, gluino G, stop t ...** followed by $Q → X + \text{visible objects with } E=m_Q-M_X$
- If E is small, trigger ISR (monojet)
- LHC explored significant parameter region already

Is Monojet signature viable at future colliders?

- Experimental uncertainty at HL or HE- LHC (quick estimate)
 The reach significantly depend on background estimation
- 2. How distribution depends on Q? (spin 0 or 1/2 and color 3 or 8) Identify **theoretical precision** needed to **identify nature of Q**
- 3. MC uncertainty in NLO[MC@NLO] Top partner example:

LO merging →TT(NLO) [This is where we are]

[Today, we try current best MC we have]

TT+j (NLO with jet PT cut) NLO[MG5_aMC@NLO: allows simulation of all kind of BSM particles]

TT+njet MEPS@NLO [Sherpa, modifying ttbar generation]

baseline simplified models

Particle name		Color Rep.	Lorentz Rep.	Decay
Fermionic Top partner	(T_p)	3	Dirac fermion	q + X
Top squark	$(ilde{t})$	3	Complex scalar	$t^*X \to bqq + X$
Gluino	$(ilde{g})$	8	Majorana fermion	qq + X
Scalar Gluon	(σ)	8	Real Scalar	

- * Assume **QCD** interaction for production.
- ** Only **one colored particle** (no yukawa type processes in production)
- *** decay by small Yukawa (I do not care, but you can think about fancy thing like displaced vertex, soft lepton..)
- **** mass difference set to be 20GeV for a moment for simplicity, mass difference maybe fixed by DM density, but too much modeling

current status and extrapolation

[Summary]

HL-LHC may access Top partner up to 800GeV with 3000fb-1 HE-LHC(27TeV) improve signal and background

IM	$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	predicted events	statistical error	total error		
1	> 250	245900 ± 5800	0.2 %	2.3~%		
2	> 300	138000 ± 3400	0.3~%	2.5~%		systematics
3	> 350	73000 ± 1900	0.4~%	2.6~%	do	minate in low
4	> 400	39900 ± 1000	0.5~%	2.5~%		Emiss
5	> 500	12720 ± 340	0.9~%	2.6~%		LIIIISS
6	> 600	4680 ± 160	1.5~%	3.4~%		statistics
7	> 700	2017 ± 90	2.2~%	4.4 %		
8	> 800	908 ± 55	3.3~%	6.1 %		dominate
9	> 900	464 ± 34	4.6~%	7.3 %		and improve
10	> 1000	238 ± 23	6.4~%	9.7 %		with high L

e 2: The predicted number of SM background events and associated errors for the inclusive signal in (IM1-IM10) as given in [13]. The Statistical errors are estimated from the predicted number of s.

current status and HL-LHC

HL-LHC may access Top partner up to 800GeV with 3000fb-1 unlike current experimental study, we use QQ+ j (NLO) to estimate signal distribution

High Energy LHC 27TeV

stop 600GeV, top parter 1100GeV, and Gluino 1800 GeV

Figure 4: Same as Fig. 2 but scaled for $\sqrt{s} = 27$ TeV assuming (a) $\mathcal{L} = 3$ ab⁻¹ and (b) 15 ab⁻¹.

2. can we distinguish parent particle Q?

Changing beam energy (normalization)

ex: increase pt cut from 600 GeV to 800 GeV, σ (gluino)/ σ (stop)= 1.3

ex: increase \sqrt{s} =27TeV σ (gluino)/ σ (stop) =2.1 σ (T)/ σ (stop)= 1.35

3. NLO simulation for monojet signal

+

because our signal is a hard jet

QQ NLO
Does not give
useful prediction

REAL emission

QQ+j NLO ...This is what we need

scale dependence of TT production (NLO)

changing shower starting scale by factor of $2 \rightarrow 1.5$ increase

renormalization scale dependence does not improve 30%~50%

This is known feature for all MC@NLO but especially large uncertainty for monojet process

scale dependence of TT+ j NLO prediction

10% error for soft emission limit →20% error with hard emission

TpTp 2j(MEPS @NLO) Sherpa

TT+ jets MEPS@NLO (Sherpa) TT+ j (NLO) (MG5)

Error on the ratio of the cross section at different Etmiss cut

Large gluon PDF uncertainty → 3% slope uncertainty between 300GeV-1TeV

renormalization scale error cancel mostly if we take common scale factor to the nominal ptcut

conclusion

- Monojet distribution contains some information on the parent particle. spin independence of pT distribution, and mass dependence of cross section change with energy
- Discovery in future Control of BG systematical errors is essential in High Luminosity Era
- In HE-LHC, you may identify nature of parent particle H from pT distribution of ISR jets.
- Question on normalizing (N)LO merged distribution by (N)NLO cross section