

ICHEP 2018, Friday, 6th July

Low-Temperature Enhanced Semi-Annihilation and AMS-02

Andrew Spray & Yi Cai JHEP 1601 (2016) 087 JHEP 1606 (2016) 156 JHEP 1702 (2017) 120 1807.00832

Motivation

Bounds on thermal DM starting to get quite strong

LPT-Orsay-17-09, CPHT-RR009.032017, SCIPP 17/03

The Waning of the WIMP? A Review of Models, Searches, and Constraints

Giorgio Arcadi^{*a*}, * Maíra Dutra^{*b*}, † Pradipta Ghosh^{*b,c*}, † Manfred Lindner ^{*a*}, § Yann Mambrini^{*b*}, ¶ Mathias Pierre^{*b*}, ** Stefano Profumo^{*d,e*}, †† and Farinaldo S. Queiroz^{*a*‡‡}

- Successful test of this idea!
- But we should be diligent in checking for loopholes
- What are our assumptions?
 What if we relax them?

Bounds on thermal DM starting to get quite strong

LPT-Orsay-17-09, CPHT-RR009.032017, SCIPP 17/03

The Waning of the WIMP? A Review of Models, Searches, and Constraints

Giorgio Arcadi^{*a*},* Maíra Dutra^{*b*},[†] Pradipta Ghosh^{*b,c*},[‡] Manfred Lindner ^{*a*},[§] Yann Mambrini^{*b*},[¶] Mathias Pierre^{*b*},^{**} Stefano Profumo^{*d,e*},^{††} and Farinaldo S. Queiroz^{*a*‡‡}

- Successful test of this idea!
- But we should be diligent in checking for loopholes
- What are our assumptions?
 What if we relax them?
- Very basic assumption:
 DM stabilised by Z₂ symmetry

- Implies this familiar diagram
- Detection rates related to relic density calculation
- Leads to these strong bounds

- Implies this familiar diagram
- Detection rates related to relic density calculation
- Leads to these strong bounds

- * Not Generic! (D'Eramo & Thaler, 2010)
- * Non- Z_2 syms \rightarrow Semi-Annihilation:
 - Non-decay processes
 - Odd number of external dark states
- Irrelevant for colliders & DD

Leads to these strong bounds

Irrelevant for colliders & DD

BUT constraints weakened, not removed

 Semi-annihilation leads to cosmic ray signals

* BUT constraints weakened, not removed

* Semi-annihilation leads to cosmic ray signals $\chi \qquad \sigma_{RD/ID} \qquad \chi'$ BUT constraints weakened, not removed

- Important to understand model space, phenomenology and thus constraints
- * Initial effort in EFT language, JHEP 1702 (2017) 120

* $2 \rightarrow 2$ SA phenomenologically limited

- * $2 \rightarrow 2$ SA phenomenologically limited
- * $2 \rightarrow 3+$ SA phase space suppressed... ... unless it is really $2 \rightarrow 2$

- EFT approach assumes cross section simple function of velocity
- Exceptions (enhanced at low v) are well-known:
 - Sommerfeld, bound states, Breit-Wigner resonance
- Bigger signals today >>
 phenomenologically interesting
- Thermal history becomes sensitive to DM temperature

- EFT approach assumes cross section simple function of velocity
- Exceptions (enhanced at low v) are well-known:
 - Sommerfeld, bound states, Breit-Wigner resonance
- Bigger signals today >>
 phenomenologically interesting

 Thermal history becomes sensitive to DM temperature

Dark Matter Temperature and Semi-annihilation

* Definition of DM temperature T_{χ} : (Binder et al, 1706.07433)

Maxwellian

$$f(E) = e^{-E/T_{\chi}}$$

$$T_{\chi} = \frac{g_{\chi}}{n_{\chi}} \int \frac{d^3 p_{\chi}}{(2\pi)^3} \frac{\vec{p}_{\chi}^2}{3E_{\chi}} f(p_{\chi})$$

Usual behaviour:

Details require solving an extra Boltzmann equation

$$\langle \sigma v \rangle_2 = \frac{g_{\chi}^2}{n_{\chi}^3} \int \frac{d^3 p_1}{(2\pi)^3} \, \frac{d^3 p_2}{(2\pi)^3} \, \frac{p_{\chi}^2}{\mathbf{3}T_{\chi}E_{\chi}} \, f_1(p_1) \, f_2(p_2) \, \sigma v$$

- * Average of p^2/E for external DM particle
- Effect of SA first discussed in Kamada et al [1707.09238]:
 - Must include forward and backward contributions
 - * Self-heating: fraction q_{χ} of mass converted to DM kinetic energy

$$\frac{dT_{\chi}}{dT} \sim \frac{1}{n_{\chi}} \frac{dt}{dT} \frac{dE_{\chi}}{dt} \sim \frac{1}{n_{\chi}} \frac{1}{HT} q_{\chi} m_{\chi} n_{\chi}^2 \langle \sigma v(SA) \rangle$$
$$\sim \frac{s}{HT} q_{\chi} m_{\chi} Y_{\chi} \langle \sigma v(SA) \rangle$$

$$\langle \sigma v \rangle_2 = \frac{g_{\chi}^2}{n_{\chi}^3} \int \frac{d^3 p_1}{(2\pi)^3} \, \frac{d^3 p_2}{(2\pi)^3} \, \frac{p_{\chi}^2}{\mathbf{3}T_{\chi}E_{\chi}} \, f_1(p_1) \, f_2(p_2) \, \sigma v$$

- * Average of p^2/E for external DM particle
- Effect of SA first discussed in Kamada et al [1707.09238]:
 - Must include forward and backward contributions
 - * Self-heating: fraction q_{χ} of mass converted to DM kinetic energy

$$\frac{dT_{\chi}}{dT} \sim \frac{1}{n_{\chi}} \frac{dt}{dT} \frac{dE_{\chi}}{dt} \sim \frac{1}{n_{\chi}} \frac{1}{HT} q_{\chi} m_{\chi} n_{\chi}^{2} \langle \sigma v(SA) \rangle$$
$$\sim \underbrace{\frac{s}{HT}}_{I} q_{\chi} m_{\chi} Y_{\chi} \langle \sigma v(SA) \rangle$$
Constant (rad. dom.)

$$\langle \sigma v \rangle_2 = \frac{g_{\chi}^2}{n_{\chi}^3} \int \frac{d^3 p_1}{(2\pi)^3} \, \frac{d^3 p_2}{(2\pi)^3} \, \frac{p_{\chi}^2}{\mathbf{3}T_{\chi}E_{\chi}} \, f_1(p_1) \, f_2(p_2) \, \sigma v$$

- * Average of p^2/E for external DM particle
- Effect of SA first discussed in Kamada et al [1707.09238]:
 - Must include forward and backward contributions
 - * Self-heating: fraction q_{χ} of mass converted to DM kinetic energy

$$\frac{dT_{\chi}}{dT} \sim \frac{1}{n_{\chi}} \frac{dt}{dT} \frac{dE_{\chi}}{dt} \sim \frac{1}{n_{\chi}} \frac{1}{HT} q_{\chi} m_{\chi} n_{\chi}^{2} \langle \sigma v(SA) \rangle$$

$$\sim \underbrace{s}_{HT} q_{\chi} m_{\chi} Y_{\chi} \langle \sigma v(SA) \rangle$$
Constant (rad. dom.) Constant

$$\langle \sigma v \rangle_2 = \frac{g_{\chi}^2}{n_{\chi}^3} \int \frac{d^3 p_1}{(2\pi)^3} \, \frac{d^3 p_2}{(2\pi)^3} \, \frac{p_{\chi}^2}{\mathbf{3}T_{\chi}E_{\chi}} \, f_1(p_1) \, f_2(p_2) \, \sigma v$$

- * Average of p^2/E for external DM particle
- Effect of SA first discussed in Kamada et al [1707.09238]:
 - Must include forward and backward contributions
 - * Self-heating: fraction q_{χ} of mass converted to DM kinetic energy

$$\frac{dT_{\chi}}{dT} \sim \frac{1}{n_{\chi}} \frac{dt}{dT} \frac{dE_{\chi}}{dt} \sim \frac{1}{n_{\chi}} \frac{1}{HT} q_{\chi} m_{\chi} n_{\chi}^{2} \langle \sigma v(SA) \rangle$$

$$\sim \underbrace{s}_{HT} q_{\chi} m_{\chi} Y_{\chi} \langle \sigma v(SA) \rangle$$
Constant (rad. dom.) Constant (relic dens.)

$$\langle \sigma v \rangle_2 = \frac{g_{\chi}^2}{n_{\chi}^3} \int \frac{d^3 p_1}{(2\pi)^3} \frac{d^3 p_2}{(2\pi)^3} \frac{p_{\chi}^2}{\mathbf{3}T_{\chi}E_{\chi}} f_1(p_1) f_2(p_2) \sigma v$$

- * Average of p^2/E for external DM particle
- Effect of SA first discussed in Kamada et al [1707.09238]:
 - Must include forward and backward contributions
 - * Self-heating: fraction q_{χ} of mass converted to DM kinetic energy

$$\frac{dT_{\chi}}{dT} \sim \frac{s}{HT} q_{\chi} m_{\chi} Y_{\chi} \langle \sigma v(SA) \rangle$$
$$T_{\chi} \propto T \qquad \text{in far IR}$$

- Situation with dark partners more complex
- Dark partner number density?

Does dark partner scatter before decaying?
 Do we need to track dark partner temperature?

$$\frac{dy_{\chi}}{dx} \supset \frac{1}{xHZ} \left\langle \frac{p_{\chi}^2}{3E_{\chi}T_{\chi}} \right\rangle \Gamma_{\Psi} \left(\frac{Y_{\Psi}}{Y_{\chi}} - \frac{Y_{\Psi}^{eq}}{Y_{\chi}^{eq}} \mathcal{D}_{\mathcal{T}}(T, T_{\chi}) \right)$$

General conclusion is unchanged

 $T_{\chi} \propto T$ in far IR

- SADM vs annihilating DM with low-temperature enhancements:
 - Warmer at late times
 - Smaller rates after kinetic decoupling
 - Relic density for larger couplings
 - Larger possible signals today
- Annihilating DM max signal ~100 times thermal cross section
- What about SADM?

12//19

Case Study: AMS-02

- Positron anomaly
 - Old excess in e^+ at E > 10 GeV
 - AMS-02 most recent, best precision
 - Could be astrophysics, esp. pulsars (HAWC observations of Geminga)
- Particle DM explanations:
 - Dominantly produce leptons (no antiproton excess)
 - * Direct e^+ typically a poor fit
 - * Need large cross sections $\sigma \sim 10^3\,{\rm pb}$

14/19

Simplified model

- * Coupling structure could derive from $U(1)_{L\mu-L\tau}$
- Two dark partner decay modes:

Sequential 2-body

15/19

- Can fit excess well, though constrained by CMB
- Very large signals possible
 - 10⁵ enhancement consistent with relic density
 - Smaller enhancement requires less tuning of parameters

17/19

Conclusions

- Semi-annihilation is a generic feature of dark matter stabilised by any symmetry other than a Z₂
- It eases the bounds from colliders and direct detection
- Cosmic ray observations are relevant, motivating models where SA today is enhanced
- * All SADM models redshift like radiation, $T_{\chi} \sim T$, in far IR
- Warmer DM allows signal enhanced by up to 10⁵, much greater than possible for annihilating DM
- We have used this to explain AMS-02 positron excess

- Semi-annihilation is a generic feature of dark matter stabilised by any symmetry other than a Z₂
- It eases the bounds from colliders and direct detection
- Cosmic ray observations are relevant, motivating models where SA today is enhanced
- * All SADM models redshift like radiation, $T_{\chi} \sim T$, in far IR
- Warmer DM allows signal enhanced by up to 10⁵, much greater than possible for annihilating DM
- We have used this to explain AMS-02 positron excess
 Thank You!