

Searches for New Heavy Resonances in Final States with Leptons and Photons

6th July 2018 ICHEP 2018

Benjamin Radburn-Smith on behalf of the CMS Collaboration

Seoul National University

Introduction

- Many models beyond the Standard Model (BSM) predict resonances at the TeV energy scale
 - These include spin-0, spin-1 and spin-2 resonances produced in such models as the Sequential Standard Model (SSM) with SM-like couplings, Grand Unified Theories (GUT) with E₆ gauge group, Randall–Sundrum (RS) model of extra dimensions leading to Kaluza–Klein graviton (G_{KK}) excitations
 - We search for an excess on-top of a SM background
- The use of leptonic/photonic resonances has been a critical tool in searching for signatures of physics
 - The W&Z boson as well as Higgs boson were all discovered using these signatures

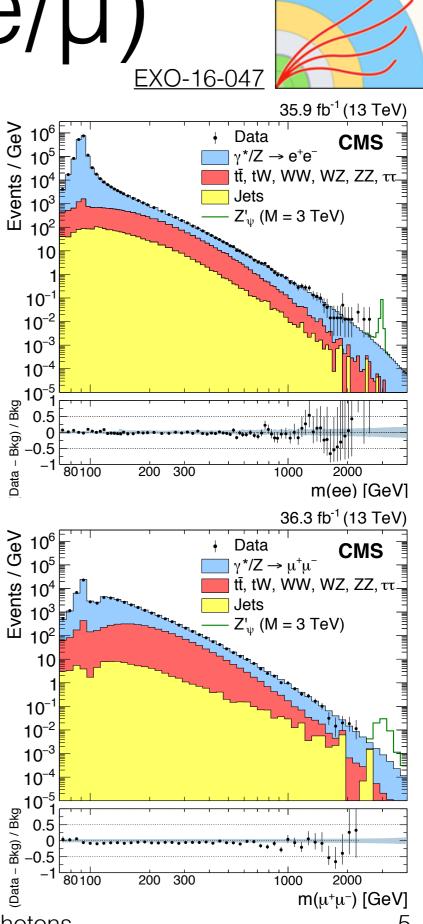
Importance of different final states

- Electrons provide an important tool for discoveries with their excellent energy resolution at higher energies
 - This leads to a better mass resolution compared to muons
- High momentum muons are reconstructed with higher efficiency than their electrons counterparts
 - This allows us to set stronger limits with muons compared to electrons
- Taus allow us to probe couplings to 3rd generation leptons
- Photons are sensitive to spin-0 resonances
- Only by utilising all these final states can we robustly search for heavy resonances

B. Radburn-Smith

Analyses

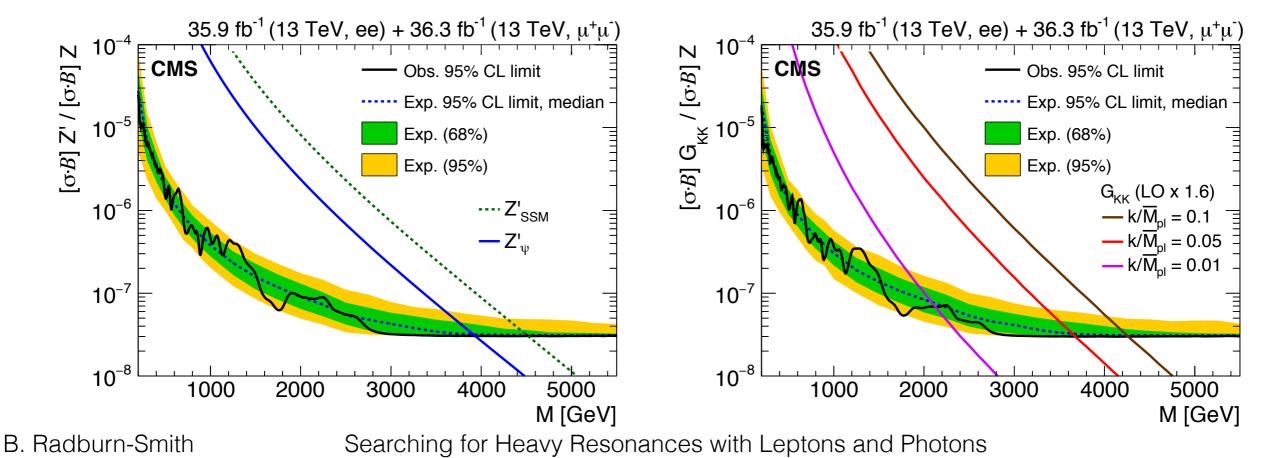
 I will briefly present the following results which are based from different datasets collected by the CMS experiment including those from 2016 and 2017


#	Analysis	Integrated Luminosity	Code	
1	Z′→ℓℓ (ℓ=e/µ)	36 fb ⁻¹ (2016)	<u>EXO-16-047</u>	~New = released in 2018
2	Z′→ee	41 fb ⁻¹ (2017)	EXO-18-006	~New = released in 2018
3	W′→ℓv (ℓ=e/µ)	36 fb⁻¹ <mark>(2016)</mark>	EXO-16-033	~New = released in 2018
4	Ψ′→τν	36 fb ⁻¹ (2016)	EXO-17-008	~New = released in 2018
5	Х→еµ	36 fb ⁻¹ (2016)	<u>EXO-16-058</u>	~New = released in 2018
6	Χ→γγ	36 fb ⁻¹ (2016)	EXO-17-017	~New = released in 2018

• Full list of CMS Exotica results are available here

1. Z′→ℓℓ (ℓ=e/µ)

- An inclusive search for a new resonance using 36 fb⁻¹ (all 2016)
 - The MC background is normalised to the Z peak
 - The amount of jet background is estimated from data
- Selection: Electrons (muons) are required to have p_T>35 (53) GeV and isolated
- Improvements in both the online and offline muon selection increased the efficiency above 1 TeV
- A deficit in muons ($|\eta| < 1.2$, $M_{\mu\mu} > 1.6$ TeV) leads to a local significance of 1.8 σ when considering the entire pseudorapidity range
 - Significance is compatible with stat. fluctuation
 - Subsequent studies gave deepest understanding of high p_T muons at CMS


~New

B. Radburn-Smith

~New . Z′→ℓℓ (ℓ=e/μ) EXO-16-047

- Results are interpreted in the ratio of the signal cross section/Z cross section so we are insensitive to the uncertainty on the luminosity
- The statistical analysis from the electron channel and muon channel are combined in order to place stronger limits on the lower bounds of the Z' mass
- Limits are set on both spin-1 and spin-2 resonances
 - No significant deviations from the SM
 - Spin-1: m(Z'_ψ)>3.9 TeV, m(Z'_{SSM})>4.5 TeV
 - Spin-2: k/Mp=0.01: m>2.10 TeV, k/Mp=0.05: m>3.65 TeV, k/Mp=0.1: m>4.25 TeV

2. $\angle' \rightarrow ee$

Events / GeV

10⁶

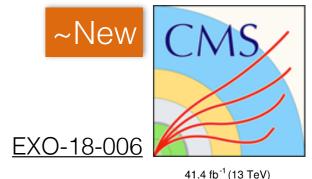
10⁵

10

10²

10- 10^{-2}

 10^{-3} 10-


10-5

05

80100

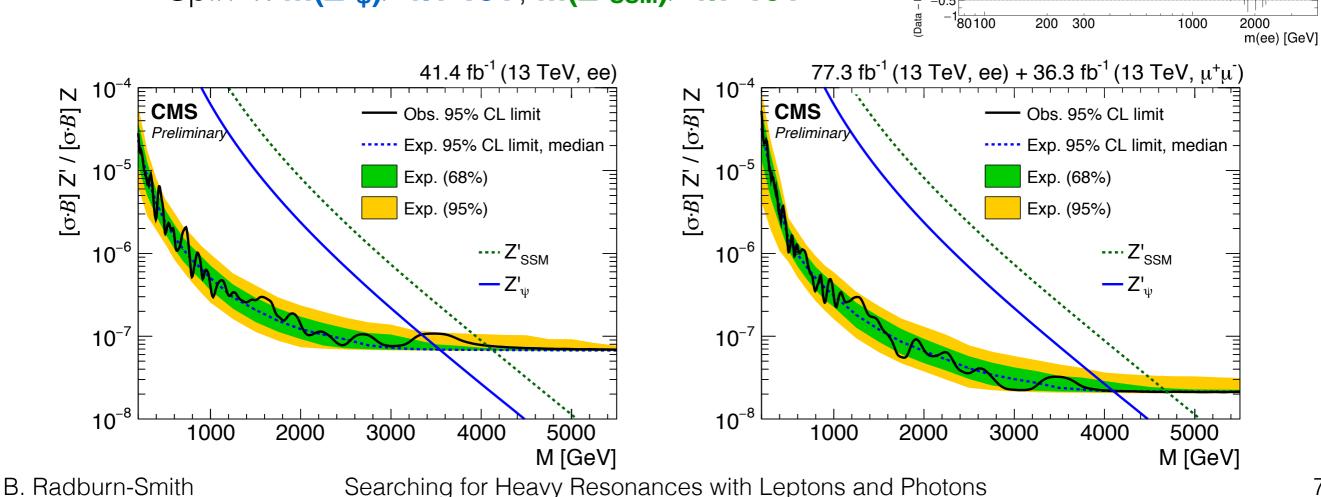
200 300

10

CMS Preliminary

Data

.lets

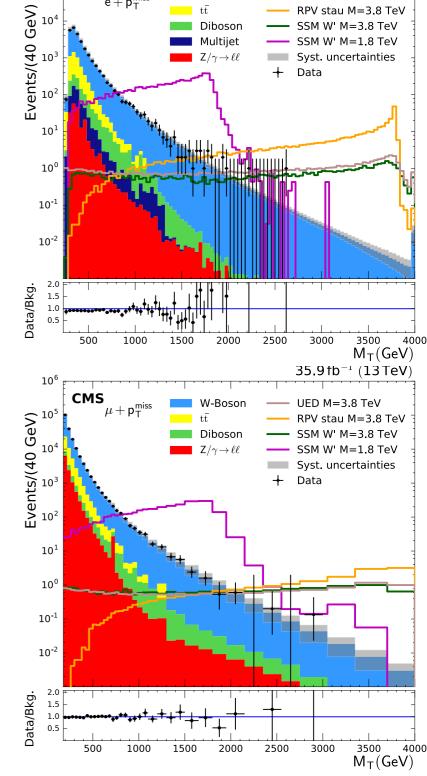

 $\gamma^*/Z \rightarrow e^+e^-$

1000

2000

tt, tW, WW, WZ, ZZ, ττ

- An inclusive search for a new resonance using 41 fb⁻¹ (all 2017) in the electron channel
- The statistical analysis from the electron channel are combined with 2016 analysis in order to place stronger limits on the lower bounds of the Z' mass
 - Spin-1: m(Z'_ψ)>4.1 TeV, m(Z'_{SSM})>4.7 TeV



3. $W' \rightarrow \ell v (\ell = e/\mu)$ EXO-16-033

- Searching for a highly energetic electron or muon along with missing energy using 36 fb⁻¹ (all 2016)
- Uses the discriminating variable: transverse mass, $M_{\rm T} = \sqrt{2p_{\rm T}^{\ell} p_{\rm T}^{\rm miss} (1 \cos[\Delta \phi(\ell, \vec{p}_{\rm T}^{\rm miss})])}$
- Dominant and irreducible background is $\mathsf{W}\!\rightarrow\!\ell\mathsf{v}$
 - Different MC generated at both LO and NLO, with higher order EW and QCD effects are evaluated and a suitable K factor used (FEWZ 3.1)
- Selection:
 - pT>130 (53) GeV for electron (muon)
 - Events with additional leptons with p_T>25 GeV are excluded
 - In the electron channel the p_T^{miss} >150 GeV

10⁵

CMS

B. Radburn-Smith

≘(fb

×

P

×

B ×

10

500

1000

1500

2000

2500

CMS

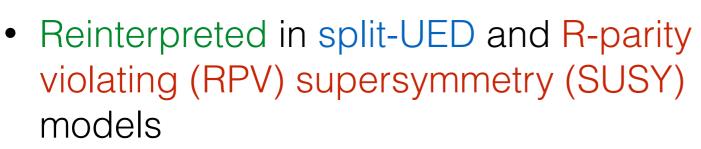
e,µ+p^{mise}

3500

3000

35.9 fb⁻¹ (13 TeV)

bserved 2015 lim


Median expected limit

5% CL limit

1 s.d.

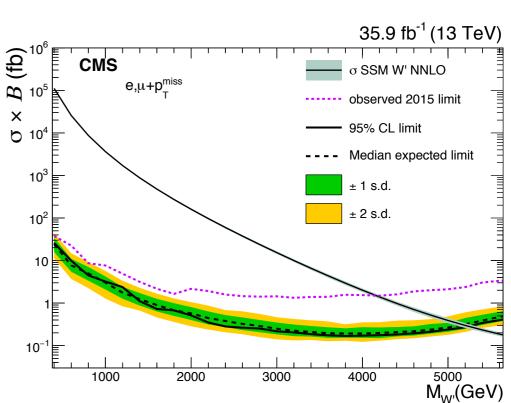
± 2 s.d.

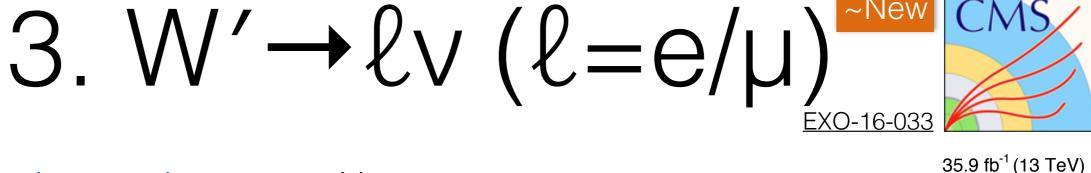
- violating (RPV) supersymmetry (SUSY) models
 - RPV SUSY naturally generates nonzero neutrino masses

• With no observed excess with respect

Model independent cross section ×

the lower M_T threshold are also

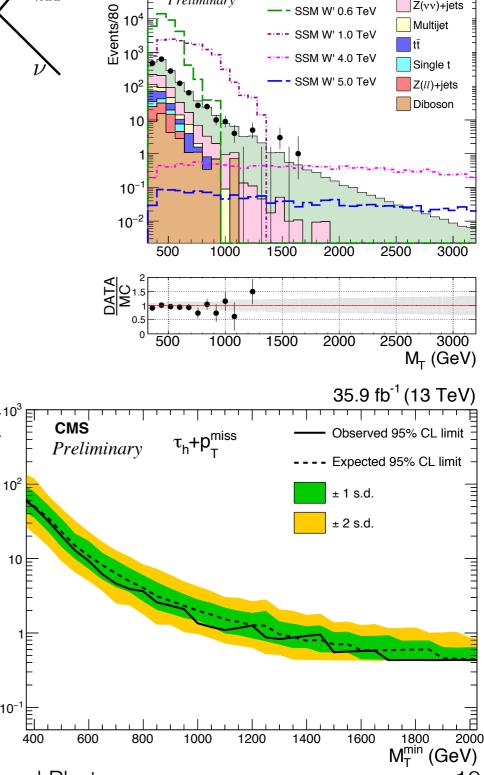

the mass of the W'

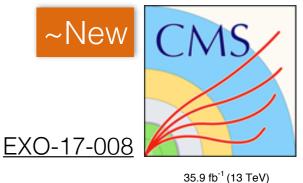

produced

m(W′_{SSM})>5.2 TeV

to the SM, lower limits can be placed on

branching fraction limits as a function of

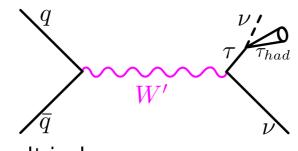




- Search for $W' \rightarrow \tau v$
 - Using 36 fb⁻¹ (all 2016)
 - Hadronic decays of the tau which result in low charged hadron multiplicity
 - Leptonically decaying taus cannot be distinguished from $W' \rightarrow \ell v$ ($\ell = e/\mu$) and are covered by that analysis
- M_T is used as a discriminator variable
- Selection:
 - τ p_T>50 GeV and p_T^{miss}>90 GeV
 - Events with additional leptons with p_T>20 GeV are excluded
- Limits are set on the lower mass for a W' •
- m(W'_{SSM})>4.0 TeV
- Similarly to $W' \rightarrow \ell v \ (\ell = e/\mu)$ limits are produced in a model independent way
 - Allowing for further reinterpretations

B. Radburn-Smith

Searching for Heavy Resonances with Leptons and Photons



W+jets

Z(vv)+jets

Multijet

∈(fb)

х

P х

B

× р

10-

کھ 10⁵

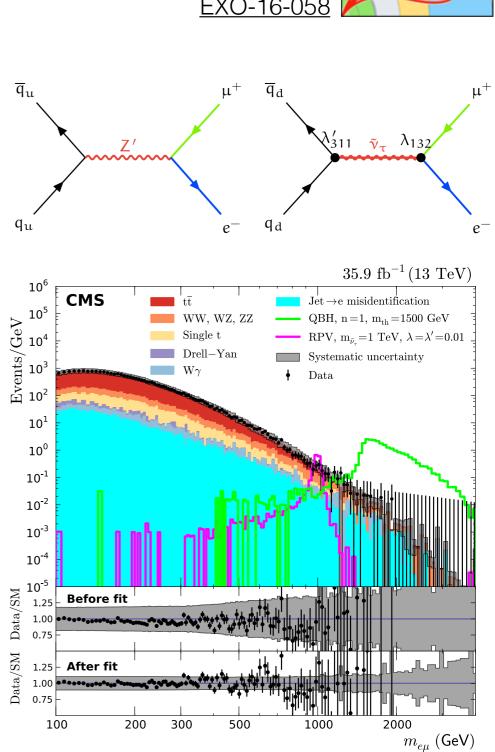
 10^{4}

CMS

Preliminary

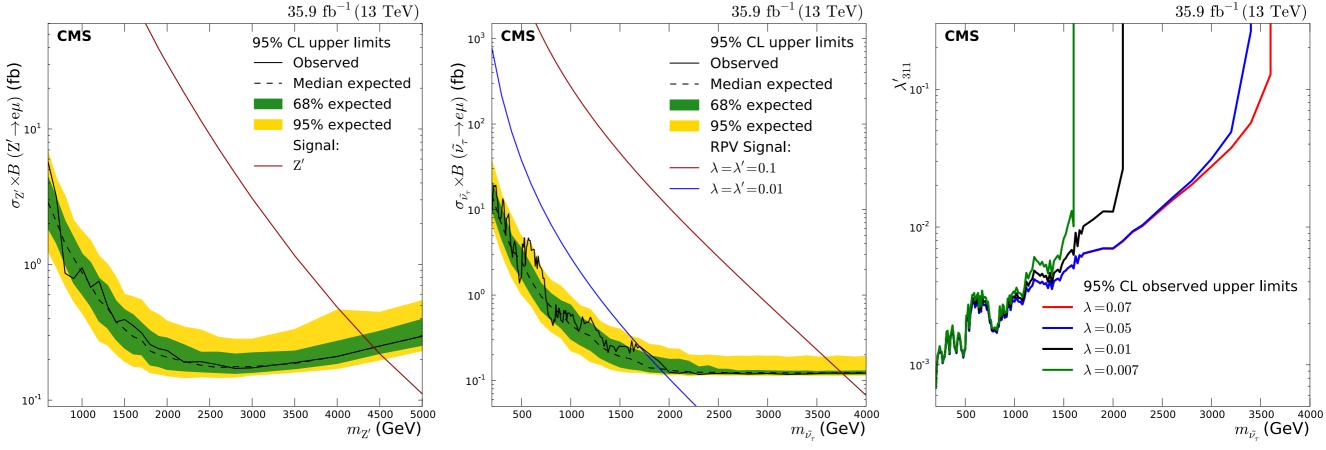
• Data

- - SSM W' 0.6 TeV


- SSM W' 1.0 TeV

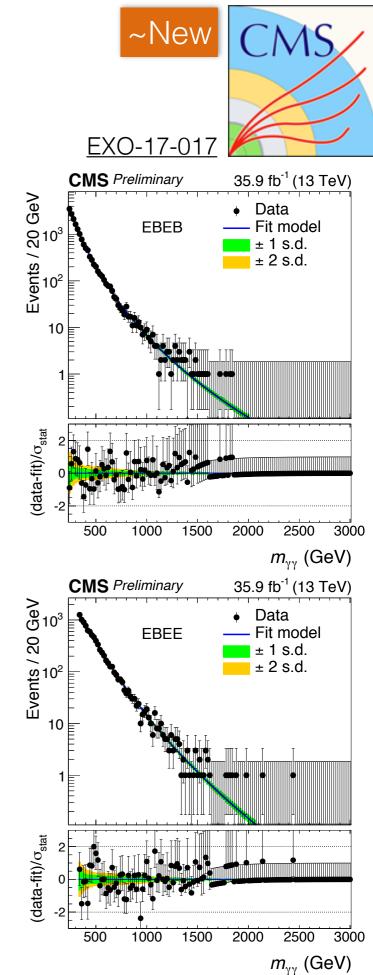
5. X→eµ

- Model independent search for heavy resonances decaying into eµ using 36 fb⁻¹ (all 2016)
- Selection:
 - p_T>35 (53) GeV for electron (muon)
 - A minimum transverse momentum requirement of p_T>50 GeV is also required online
 - The electron and muon are not required to have opposite charge (to avoid loss through charge mis-ID)
 - M_{eµ}≥200 GeV
- SM background from processes with two prompt leptons as well as Wγ is obtained from MC while W+Jets and QCD multijet backgrounds are calculated using fake rate studies in data



5. X→eµ

- Results are interpreted in models with Lepton Flavour Violation
 - A heavy Z' with LFV: m(Z')>4.4 TeV where $\mathscr{B}(Z' \rightarrow e\mu)=10\%$
 - τ sneutrino in RPV SUSY: **m(X) > 1.7, 3.8 TeV** for RPV couplings $\lambda_{132} = \lambda_{231} = \lambda'_{311} = 0.01, 0.1$
 - Non-resonant QBH (not shown here)
- In narrow width approximation the $\sigma \times BR$ scales with the RPV coupling
 - Using this information and observed bounds, limit contours in the $(M(\tilde{v}_{\tau}), \lambda'_{311})$ plane can be produced as a function of a fixed value of $\lambda_{132} = \lambda_{231}$

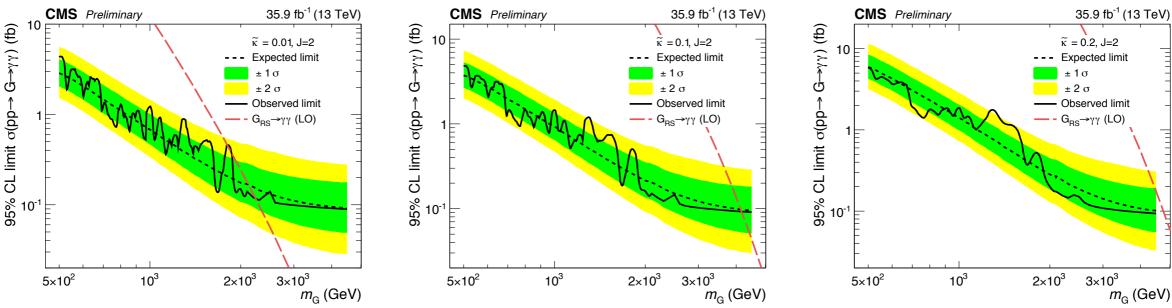


B. Radburn-Smith

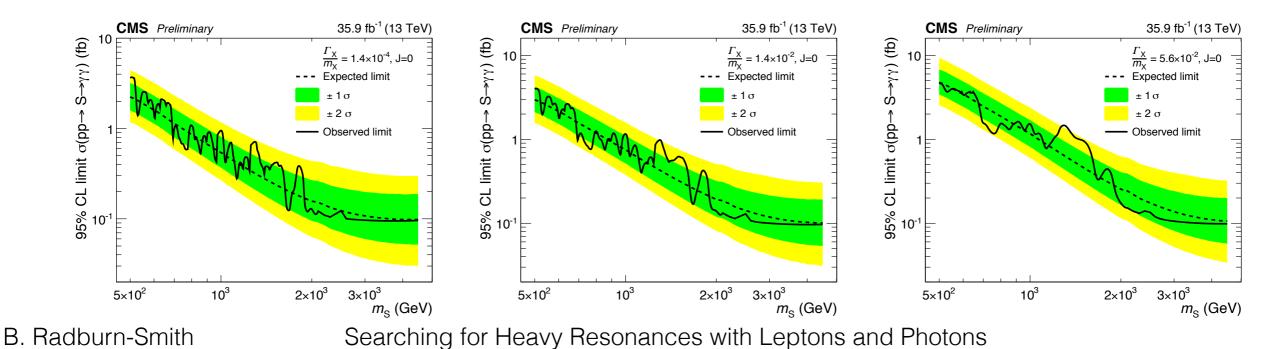
6. $X \rightarrow \gamma \gamma$

- Search for resonant production of photon pairs using 36 fb⁻¹ (all 2016)
 - A very clean final state without additional activity in the direction of the two photons
- Three values of the relative width \(\Gamma_x/m_x\) are used as benchmarks: 1.4×10⁻⁴, 1.4×10⁻², and 5.6×10⁻²
- Selection:
 - Photons are required to have p_T>75 GeV
 - At least one photon in the barrel
- Events are categorised depending on the location of the two photons
- A fit is performed to the invariant mass spectra to determine the compatibility of the data with the background-only and the signal+background hypotheses
- Results are interpreted in terms of a spin-2 RS graviton and spin-0 heavy Higgs resonance

B. Radburn-Smith



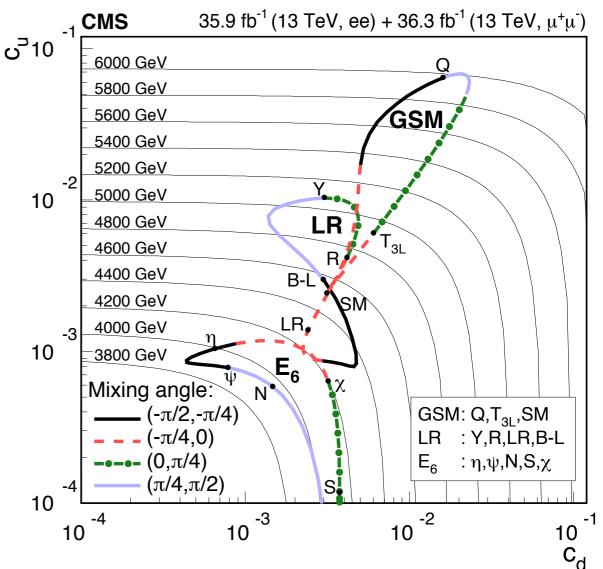
6. $X \rightarrow \gamma \gamma$



• Lower limits on the mass of the RS graviton are set as:

• m(RS_G)>2.1, 4.1, 4.6 TeV for \tilde{k} =0.01, 0.1, 0.2

 Limits are also set for spin-0 resonances which differ due to detector acceptance and production mechanism



Reinterpretations

- Many of the results from these analyses are performed in a manner to allow 3⁻¹ reinterpretation
- e.g. 1. Z'→ℓℓ (ℓ=e/µ):
 - The limits are produced using only the Z' peak allowing for easy reinterpretation
 - Limits are recast on the coupling parameters

Reinterpretations

- e.g. 1. Z'→ℓℓ (ℓ=e/µ):
 - Easy reinterpretation is then possible such as within a simplified Dark Matter (DM) model
 - Here we assume the DM particle is a Dirac fermion and its associated mediator is either vector or axial vector

Summary

- A summary of several analysis from CMS searching for new resonances with leptonic/photonic final states was presented using data collected from 2016 and 2017
- No excesses above the SM have been observed and lower limits have be placed on the mass of resonances from various theoretical models
- Many results were produced in way to allow for easy reinterpretation

#	Analysis	Model	Mass (TeV)
1	Z′→ℓℓ (ℓ=e/μ)	SSM (Ψ)	4.5 (3.9)
2	Z′→ee	SSM (Ψ)	4.7 (4.1)
3	W′→ℓv (ℓ=e/µ)	SSM	5.2
4	Ψ΄→τν	SSM	4.0
5	Х→еµ	RPV SUSY	1.7-3.8
6	Χ→γγ	RS _G	2.1-4.6