

Searches for New Phenomena in Dijet Events with the ATLAS Detector

Andrea Coccaro

INFN Genoa

Andrea Coccaro

Motivation

Generic searches for new physics with strong interactions

if new heavy resonances are directly produced in collisions, decays to jets are expected

Motivation

Generic searches for new physics with strong interactions

if new heavy resonances are directly produced in collisions, decays to jets are expected

How?

Andrea Coccaro

Highest-mass di-jet event

ex 2018 CB.OR 14 51 15 CFS

 $m_{jj} = 8.12 TeV$

High-mass di-jet search / Phys. Rev. D 96 (2017) 052004

Resonance search

- Iow-end mass range dictated by jet trigger threshold
- y* selection to reject some QCD background
- data-driven background estimate using empirical function and new sliding window approach
- BumpHunter to search for excesses

Angular search

- similar analysis strategy but focus on angular distributions
- higher sensitivity to non-resonant new physics
- *dN/d χ* is approximately independent of *χ* = *e*^{2|*y*∗|} unless new physics appears

	$p_{\mathrm{T}}^{\mathrm{leading}}$	$p_{\rm T}^{\rm subleading}$	$ y^* $	$ y_{\rm B} $	m_{jj}
Resonance	> 0.44 TeV	> 0.06 TeV	< 0.6	-	> 1.1 TeV
W^*	> 0.44 TeV	> 0.06 TeV	< 1.2	-	> 1.7 TeV
Angular	> 0.44 TeV	$> 0.06~{\rm TeV}$	< 1.7	< 1.1	> 2.5 TeV

Andrea Coccaro

High-mass di-jet search / Phys. Rev. D 96 (2017) 052004

- 《 ロ 》 《 聞 》 《 臣 》 《 臣 》 三臣 … の Q ()

Andrea Coccaro

High-mass di-jet search / Phys. Rev. D 96 (2017) 052004

Model	95% CL exclusion limit			
	Observed	Expected		
Quantum black hole	$8.9~{\rm TeV}$	$8.9~{\rm TeV}$		
W'	$3.6 { m TeV}$	$3.7~{\rm TeV}$		
W^*	$\begin{array}{c} 3.4 {\rm TeV} \\ 3.77 {\rm TeV} - 3.85 {\rm TeV} \end{array}$	$3.6~{\rm TeV}$		
Excited quark	$6.0 { m TeV}$	$5.8~{ m TeV}$		
$Z' (g_q = 0.1)$	$2.1 \mathrm{TeV}$	$2.1 { m ~TeV}$		
$Z' (g_q = 0.2)$	$2.9~{\rm TeV}$	$3.3~{\rm TeV}$		
Contact interaction $(\eta_{\rm LL} = -1)$	$21.8 { m TeV}$	$28.3~{\rm TeV}$		
Contact interaction $(\eta_{LL} = +1)$	$\begin{array}{c} 13.1 \ {\rm TeV} \\ 17.4 \ {\rm TeV} - 29.5 \ {\rm TeV} \end{array}$	$15.0 { m TeV}$		

- 95% CL exclusion limits for a variety of models being presented
- ▶ analogous limits on an hypothetical signal with cross-section σ_G producing a Gaussian contribution to the particle-level m_{ij} distribution

Andrea Coccaro

Di-jet search at trigger level / arXiv 1804.03496

Trigger-level resonance search

- only trigger-level jets for expanding the reach towards lower m_{ii} values
- dedicated stream with partial event building corresponding to ~ 5% of full event size
- dedicated jet calibration for online jets
- analysis then follows with usual data-driven background estimate and BumpHunter to search for excesses

bandwidth = event rate x event size

Andrea Coccaro

Di-jet search at trigger level / arXiv 1804.03496

- ▶ 95% CL exclusion limits for Z' models and Gaussian processes
- probing new resonances with masses down to 450 GeV

Andrea Coccaro

Di-jet search with b-tagging / arXiv 1805.09299

Analysis ingredients

- high-mass search (m_{jj} > 1.2 TeV) with different b-tagging multiplicity requirements
- low-mass search (570 GeV < m_{ij} < 1.5 TeV) where b-tagging is also applied at the trigger level
- dedicated b-tagging calibration at trigger level
- per-event tagging efficiency is signal dependent due to gluon splitting in b* events
- analysis then follows with usual data-driven background estimate and BumpHunter to search for excesses

Andrea Coccaro

Di-jet search with b-tagging / arXiv 1805.09299

- 95% CL exclusion limits for b*, Z' and Gaussian processes
- kinematic acceptance and b-tagging efficiency into account
- probing new resonances with preferred coupling to b-quarks with masses down to 570 GeV

Di-jet search with isolated lepton / ATLAS-CONF-2018-015

Analysis ingredients

- new experimental signature following the 'inclusive is not conclusive' paradigm
- at least one isolated electron or muon is asked, then m_{jj} distribution is studies with standard techniques
- resonances in the mass range between 0.25 TeV and 6 TeV are looked for

Andrea Coccaro

Di-jet search with high- $p_T \gamma$ or jet / arXiv 1801.08769

- looking for light resonances boosted via recoil from high- p_T ISR photon or jet
- large-R radius jet with substructure techniques to suppress the background
- data-driven background estimate validated using the SM W and Z bosons

Andrea Coccaro

Summary of various di-jet searches interpreted in DM context

Andrea Coccaro

Conclusions

Wide experimental program of new resonance searches at ATLAS

many approaches being pursued giving results in different regions of the phase-space

New physics is still hiding

- more statistics being collected
- new signatures being examined to enhance the physics reach

No more energy steps in the near future

- focus is on improving analysis techniques and background estimate strategies
- improved substructure techniques, improved b-tagging at high-p_T, etc

Challenge to keep in mind

- underlying assumption that mass spectra are smooth
- non-smoothness is being introduced by reduced statistical errors and e.g. JES, b-tagging

THANK YOU FOR YOUR ATTENTION !

Andrea Coccaro

Conclusions

Wide experimental program of new resonance searches at ATLAS

many approaches being pursued giving results in different regions of the phase-space

New physics is still hiding

- more statistics being collected
- new signatures being examined to enhance the physics reach

No more energy steps in the near future

- focus is on improving analysis techniques and background estimate strategies
- improved substructure techniques, improved b-tagging at high-p_T, etc

Challenge to keep in mind

- underlying assumption that mass spectra are smooth
- non-smoothness is being introduced by reduced statistical errors and e.g. JES, b-tagging

THANK YOU FOR YOUR ATTENTION !

Andrea Coccaro