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Why look for leptons in final states?
•Theoretical motivation:

• Such states a clear signature for interactions 
predicted by a wide range of new physics models:

• Signature of new particles such as heavy gauge 
boson (W’, Z’), and heavy lepton multiplets, predicted 
by:

• Sequential Standard Model,
• Type I-III seesaw models,
• Left-Right Symmetric Model,
• Two-Higgs-doublet model,
• Higgs triplet, dark sector extensions, …

•Lepton Flavor Violating (LFV) coupling is a 
clear and direct signature of new physics.
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Why look for leptons in final states?
•Experimental motivation:

• Distinct experimental signatures.
• Can be efficiently triggered on and recorded (lepton trigger, MET trigger).
• Precisely measured and modeled backgrounds.
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Presented results

Four new results of BSM searches in leptonic final states!

• Search for W′ 
in eν and μν decays (80/fb)

• Heavy lepton triplet search  
motivated by Type III  
seesaw mechanism (80/fb)  

• Search for high mass dilepton Zʹ resonance with  
Lepton Flavor Violating (LFV) final state (36/fb)  

• X→WZ resonance decay to lνll (l =e or µ) final states (36/fb)

All public results can be found @ https://twiki.cern.ch/twiki/bin/view/AtlasPublic

New (with 2017 data)
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New (with 2017 data)

New result
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W′ → eν , W′ → μν
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Experimental Signature is a hard lepton + MET
• Single e/µ trigger

• lepton pT> 60(e), 55(µ) GeV and MET > 60(e), 55(µ) GeV 

• Careful selection on muons to guarantee  
 a controlled resolution at high pT

Backgrounds
• Off-shell W!lν

• Top pair 
• Multi-jet (reducible)

• Fake leptons

Signal extraction: 

• Fit on mT(l,ν)  
for mT(l,ν) > 300 GeV

Theoretical motivation:
• Look for straightforward extensions of the SM with new gauge bosons:

• predicted in LRSM, in the little Higgs model … 
• Conceptually, these particles are heavier versions of the SM W and Z bosons.
• Generically referred to as W′ and Z′ bosons. 

• ATLAS uses the Sequential Standard Model (SSM) : predicts 
 a  W′ boson with couplings to fermions that are identical to the SM. 
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W′ → eν , W′ → μν
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…bottom	line,	no	excess	observed.	
Pushing	the	exclusion	towards	6	TeV!

• Production rate exclusion 
in 300<M<6000 GeV
• σ x BF < 10-1 - 9 x 10-5 pb (eν)
• σ x BF < 10-1 - 4 x 10-4 pb (μν)

• SSM W’ mass exclusion
• MW’ < 5.7 TeV (eν) 

• MW’ < 4.8 TeV (µν)
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Heavy lepton (Type III seesaw)
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Theoretical motivation:
• Explanation of very light neutrino masses. 
• SU(2) symmetry giving a heavy fermion triplet:  

 L± (heavy Dirac charged leptons) and N0 (heavy Majorana neutrinos):
• Couple to leptons and Higgs(es), neutrino masses occur via the seesaw mechanism.AT
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Leading backgrounds
• OS: Top pair, Di-boson+jets
• SS: Di-boson+jets, Fake leptons, electron charge flip

Signal signature: final state lepton pair with
•

Experimental Signature: dilepton (OS/SS) + jets + Missing ET

Analysis strategy:
• Focusing on the dilepton final state 

with charged current interactions.
• L±  and N0  couples to e, µ, τ equally.

• Main selections:
• Dilepton trigger (ee, eµ)  

Single lepton trigger (µµ)

• 2 leptons (ee, eµ, µµ) with OS/SS with Mll > 110 GeV

• 2 jets with Mjj consistent to W mass in +/- 20 GeV

• Missing ET (MET) significance > 10 (OS), 7.5 (SS)



Heavy lepton (Type III seesaw)
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Leading backgrounds
• OS: Top pair, Di-boson+jets
• SS: Di-boson+jets, Fake leptons, electron charge flip

Signal signature: final state lepton pair with
• Opposite-sign charge
•

Experimental Signature: dilepton (OS/SS) + jets + Missing ET

Analysis strategy:
• Focusing on the dilepton final state 

with charged current interactions.
• L±  and N0  couples to e, µ, τ equally

• Main selections:
• Dilepton trigger (ee, eµ)  

Single lepton trigger (µµ)

• 2 leptons (ee, eµ, µµ) with OS/SS with Mll > 110 GeV

• 2 jets with Mjj consistent to W mass in +/- 20 GeV

• Missing ET (MET) significance > 10 (OS), 7.5 (SS)
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Theoretical motivation:
• Explanation of very light neutrino masses. 
• SU(2) symmetry giving a heavy fermion triplet:  

 L± (heavy Dirac charged leptons) and N0 (heavy Majorana neutrinos):
• Couple to leptons and Higgs(es), neutrino masses occur via the seesaw mechanism.



Heavy lepton (Type III seesaw)
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Experimental Signature: dilepton (OS/SS) + jets + Missing ET

Analysis strategy:
• Focusing on the dilepton final state 

with charged current interactions.
• L±  and N0  couples to e, µ, τ equally

• Main selections:
• Dilepton trigger (ee, eµ)  

Single lepton trigger (µµ)

• 2 leptons (ee, eµ, µµ) with OS/SS with Mll > 110 GeV

• 2 jets with Mjj consistent to W mass in +/- 20 GeV

• Missing ET (MET) significance > 10 (OS), 7.5 (SS)
Signal signature: final state lepton pair with

• Opposite-sign charge
• Same-sign charge
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Leading backgrounds
• OS: Top pair, Di-boson+jets
• SS: Di-boson+jets, Fake leptons, electron charge flip

Theoretical motivation:
• Explanation of very light neutrino masses. 
• SU(2) symmetry giving a heavy fermion triplet:  

 L± (heavy Dirac charged leptons) and N0 (heavy Majorana neutrinos):
• Couple to leptons and Higgs(es), neutrino masses occur via the seesaw mechanism.



Heavy lepton (Type III seesaw)
• Signal exclusion up to 560 GeV

• Upper limit on cross-section σ~100 - 2 fb for 200-700 GeV
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Combined assuming  
equal coupling to e, µ, τ

Signal extraction: 

• Simultaneous fit on HT + MET …bottom	line,	no	excess	observed.	
Pushing	the	exclusion	upwards.
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LFV Z′ resonance
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_

LFV eµ, eτ, µτ high mass resonance search

• Single e/µ trigger without isolation

• Different flavor leptons pT > 65 GeV

Signal extraction: 

• Fit on Mll’

Backgrounds
• eµ: top pair 

• eτ, µτ : fake τ
• W+jets
• multi-jet

Theoretical motivation:
• Additional U(1) gauge symmetry: Zʹ → eµ, eτ, µτ  
• Quantum black holes:  RS (n=1 extra dimension) or ADD (n=6) : giving LFV QBH → ll’
• R-parity violating SUSYAT
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LFV Z′ resonance

4.5 (eµ), 3.7(eτ), 3.5 (µτ) TeV 3.4 (eµ), 2.9(eτ), 2.6 (µτ) TeV

3.4 (eµ), 2.9(eτ), 2.6 (µτ) TeV
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5.5 (eµ), 4.9(eτ), 4.5 (µτ) TeV

Model-dependent lower mass limits derived for the three classes of new physics models:

• Z′ with an LFV coupling
• RPV scalar neutrino 
• and QBH production tested

…		no	excess	observed.	Giving	mass	limits	at	
2.6-5.5	TeV	scale!
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X→WZ resonance

_

Theoretical motivation:
• Use Parameterized Lagrangians with a heavy vector triplet (HVT) for a generic vector resonance search:

• The benchmark model used in ATLAS assumes resonance couples to gauge bosons  
( W′ → WZ ). Can vary suppression of couplings to fermions (models A/B for VBF). 

• The Georgi–Machacek model (GM) is used as a benchmark for a singly charged scalar resonance. 

• Assuming a light fermiophobic fiveplet H5 (H++, H+, H0, H−, H−−) coupling to gauge bosons  
( H5 → WZ produced through VBF).
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Backgrounds
• multi-boson (VV, VVV) 
• single t, tt, ttV …
• fake backgrounds: 

• Z+jets, Z+𝛾
• W+jets, multi-jet

Signal extraction: 
• Constrained fit on 

MWZ.

• MWZ derived from 
lepton momenta 
and MET.

WZ → lνll (l =e or µ) high mass resonance search:

• Single e/µ trigger.

• Three leptons with Lepton pT > 27 GeV.

• Two OS SF leptons | mll - mZ | < 20 GeV.
• Special selections for VBF and qq  

categories. 



X→WZ resonance

qq category: 2260 (2460) GeV 
for gV = 1 (gV =3)

95% CL upper limits W′ VBF
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95% CL upper limits H5 VBF

Model-dependent lower mass limits derived for three new physics models:
• W′  in Heavy Vector Triplet benchmark Model A (Model B) with coupling  

constant gV = 1 (gV =3) in qq and VBF categories.
• Fermion coupling suppressed in the VBF category (cF =0).
• H5 in the Georgi–Machacek model  in the VBF category. 

A	local	excess	visible	@	450	GeV	in	VBF	category

significance 2.9 (local) and 1.6 
(global, LEE) 

significance 3.1 (local) and 1.9 
(global, LEE) 
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X→WZ resonance

qq category: 2260 (2460) GeV 
for gV = 1 (gV =3)

95% CL upper limits W′ VBF
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95% CL upper limits H5 VBF

Model-dependent lower mass limits derived for three new physics models:
• W′  in Heavy Vector Triplet benchmark Model A (Model B) with coupling  

constant gV = 1 (gV =3) in qq and VBF categories.
• Fermion coupling suppressed in the VBF category (cF =0).
• H5 in the Georgi–Machacek model  in the VBF category. 

A	local	excess	visible	@	450	GeV	in	VBF	category

significance 2.9 (local) and 1.6 
(global, LEE) 

significance 3.1 (local) and 1.9 
(global, LEE) 
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More on charged Higgs boson searches in 
the MSSM in the talk by

Lluïsa-Maria Mir



Conclusions

• A rich program is being conducted searching for new 
physics in final states with leptons in the ATLAS 
collaboration:
• heavy resonance (vector boson and scalar) searches,
• heavy lepton searches,
• LFV signature searches,
• and many more are coming!

• The first results using the 2017 data were shown
• Demonstrating readiness for the full Run-2 analyses!

• For fakes, charge flip, high pT muons, high mass l and ν modeling 
in the hard pileup condition in 2017.

• Stay tuned for more results!
• No new physics is found yet… 
• … but we are only half way through our data and full of new ideas!
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Backup
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Estimation of the fake background

• The simulation of hadronization (jet production) has 
large uncertainties.

• Very often, a data-driven approach is used.


• The most advanced data-driven techniques are the 
“matrix method” and the “fake factor method”.

• These are mathematically equivalent methods with 

small differences under the hood.

• Used in W’, Z’, H++ , type III seesaw, ….  searches.

• Side-band regions in data are designed by requiring at 
least one of the leptons to fail the analysis requirement 
(identification,  isolation, σ(d0) ).


• Transfer factors, measured from the data are used to 
predict (extrapolate) the number of fakes in the signal 
region.
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Electron charge misidentification
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Case 1) 
Bremsstrahlung 
with the photon 
escaping the inner 
detector. 
Short lever arm.

Case 2) 
Bremsstrahlung and 
consequent photon 
conversion into an 
electron-positron 
pair. Hits of the 
wrong charge lepton 
can be assigned to 
the track.

e+

e+

e+
e-

γ

γ

At typical energies (pT < 1 TeV) charge misID 
is caused predominantly by bremsstrahlung.

The probability is about 1% at the Z peak.

• In type III seesaw analysis the same-sign 
charge final state is a distinct signature.  

• Calibration and validation of electron charge 
misid. modeling in MC is performed. 
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Heavy lepton (Type III seesaw)
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Normalization of leading backgrounds 
in dedicated control regions

• Top pairs (CR with b-tag) 

• SS: diboson+jets (Mjj sideband)

Detector related backgrounds especially 
important in same-sign charge final state:

•  validation of data-driven fake 
estimation
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LFV Z boson decay

 25

Z!µµ BGZ!ee BG

AT
LA

S-
EX

O
T-

20
16

-3
6,

 
ar

Xi
v:

18
04

.0
95

68

LFV search for  Z (91 GeV)  ! eτ, µτ decay

• Single e/µ trigger with isolation

• Exactly one e/µ with pT > 30 GeV

• At least hadronic τ with visible pT > 20 GeV

Backgrounds
• Careful veto for Z!ee, µµ backgrounds (unique challenge) 

• Overlap removal between τ and e/µ 

• Z mass veto with M(tau & e) and M(track of tau & µ)

• handles lepton inefficiency or uncovered regions

Signal efficiency: 
• 3.2% for eτ

• 3.5% for µτ

Theoretical motivation:
•  Lepton-flavor-violating (LFV) Z boson decays are predicted by models with:

•  heavy neutrinos, 
• extended gauge models and 
• supersymmetry (among others). 
• The most stringent bounds on such decays with a τ-lepton in the final  

state are set by the LEP experiments.



LFV Z boson decay
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Run1 combination

(compatible with LEP)

Signal  extraction: 
• Z!τe, Z!µτ signals extracted by a fit to NN distribution 

Backgrounds
• Fake tau backgrounds
• Multi-jet
• W+jets

• Z!ττ

Signal selection using a neural network:
• NN trained to classify: 

• signal vs Z!ττ

• signal vs W+jets

• signal vs Z!ee/µµ

…bottom	line,	no	deviation	
observed.
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