

U URVINE

Searches for electroweak production of supersymmetric particles involving the Higgs boson and the higgsinos with ATLAS

Anyes Taffard University of California Irvine

ATLAS Collaboration

Motivations For Higgsinos Searches

- Higgsinos ($ilde{H}$) are spin $lambda_2$ partners of the Higgs bosons
- In natural SUSY models, Higgsinos should be light

$$-\frac{m_Z^2}{2} = |\mu|^2 + m_{H_u}^2 -$$

Naturalness in MSSM (tree level)

- Rich Electroweak SUSY sector
 - Many topologies determined by the composition of the mass eigenstates
- The mass splitting is determined by how dominant is the \tilde{H} component
 - Pure \tilde{H} could have very small splitting $\mathcal{O}(100 \text{ MeV})$
 - Moderate mixing could get to I-I0 GeV

eg Higgsino LSP

LSP: Lightest Supersymmetric Particle

can be decouples

Higgsino LSP

 $\Delta m\left(\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{\pm},\tilde{\chi}_{1}^{0}\right) \approx \text{few GeV}$

arxiv:1712.08119

Higgsinos Searches In ATLAS

Higgsino LSP

Ultra-compressed Higgsino LSP

July 5, 2018

Higgsinos Searches In ATLAS

Higgsino LSP

Ultra-compressed Higgsino LSP <u>GMSB</u> <u>Higgsino NLSP</u>

 $\Delta m\left(\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{\pm},\tilde{\chi}_{1}^{0}\right)\approx \text{few GeV}$ $\Delta m\left(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{0}\right) \approx 300 \text{ MeV}$ $\Delta m\left(\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{\pm},\tilde{\chi}_{1}^{0}\right) \approx \text{few GeV}$ qb \boldsymbol{q} ppph/Z W^* $ilde{\chi}_1^0$ \tilde{H} $\tilde{\chi}_1^0$ small Δm v. small Δm $ilde{\chi}_1^0$ $ilde{\chi}_2^0$ \hat{H} Z^* h/Zppdisappearing ℓ_{soft} btrack 4 b's ℓ leptons π^{\pm} b m_{bb} resonance $\tilde{\chi}_1^0$ NLSP decays to h/Z Decay via off-shell W/Z $\tilde{\chi}^{\pm}$ with long lifetime arXiv: 1806.04030 arxiv:1712.02118 arxiv:1712.08119 arXiv: 1804.03602 ATL-PHYS-PUB-2017-019

July 5, 2018

Higgsinos Searches In ATLAS

Higgsino LSP

Ultra-compressed Higgsino LSP <u>GMSB</u> <u>Higgsino NLSP</u>

 $\Delta m\left(\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{\pm},\tilde{\chi}_{1}^{0}\right)\approx \text{few GeV}$ $\Delta m\left(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{0}\right) \approx 300 \text{ MeV}$ $\Delta m\left(\tilde{\chi}_{2}^{0},\tilde{\chi}_{1}^{\pm},\tilde{\chi}_{1}^{0}\right) \approx \text{few GeV}$ ql \boldsymbol{q} ppph/Z W^* $ilde{\chi}_1^0$ \tilde{H} $\tilde{\chi}_1^0$ small Δm v. small Δm $ilde{\chi}_1^0$ $ilde{\chi}_2^0$ \tilde{H} Z^* h/Zpp ℓ_{soft} disappearing track 4 b's ℓ leptons or 4 leptons π^{\pm} m_{bb} resonance $\tilde{\chi}_1^0$ NLSP decays to h/Z Decay via off-shell W/Z $\tilde{\chi}^{\pm}$ with long lifetime arXiv: 1806.04030 arxiv:1712.02118 arxiv:1712.08119 arXiv: 1804.03602 ATL-PHYS-PUB-2017-019

July 5, 2018

Higgsinos LSPs with Soft Leptons

Initial state radiation to boost the final state objects

High p_T jets, well separated from E_T^{miss}

Missing transverse momentum ($E_T^{
m miss}$) from ${\widetilde \chi}_1^0$

Off-shell Z leads to soft-leptons and kinematic end point in $m_{\rm ll}$

- 4 GeV muons
- 4.5 GeV electrons

Lower than any other ATLAS search !

p

p

]

 W^*

 $ilde{\chi}_1^0$

Analysis Challenges

ATLAS Simulation

Electron

Lepton p₊ [GeV]

s=13 TeV

- m_{II} has a kinematic endpoint at $\Delta m\left(ilde{\chi}_{2}^{0}, ilde{\chi}_{1}^{0}
 ight)$
 - Different for Wino-Bino than Higgsino
 - Sensitivity driven by identification of soft leptons from off-shelf Z decays

• Challenges:

- Lepton identification at low p_T
 - Checkout M. Hodgkinson's talk
- Fake/non-prompt lepton background modeling

Efficiency

Low mass resonance

• Strategy:

- $H_T^{\text{lep}} = p_T^{l_1} + p_T^{l_2}$ smaller in SUSY compressed region than in WW or WZ
- $\frac{E_T^{\text{miss}}}{H_T^{\text{lep}}}$ higher in signal than background
 - ratio improves for lower mass splittings

 $\frac{E_T^{\text{miss}}}{H_T^{\text{lep}}} > \max[5,15 - 2m_{ll}/(1 \text{ GeV})]$

Backgrounds

Fake Leptons Dominant Background at low m_{II}

Leptonic Tau Decays

 $Z \rightarrow \tau \tau$ minimized using di-tau mass proxy

Di-leptonic Top Decays

Reduced with b-jet veto

$$m_{\tau\tau} = \operatorname{sign}(m_{\tau\tau}^2) \sqrt{|m_{\tau\tau}^2|}$$
$$m_{\tau\tau}^2 \equiv 2p_{\ell_1} \cdot p_{\ell_2}(1+\xi_1)(1+\xi_2)$$

- Estimated entirely from data using "Fake-Factor" method
- Validated in data in regions with same-sign leptons

- Estimated via controls regions (CRs)
- Scale MC prediction by data yield in background enriched regions

Results

SRs defined by cut on $\frac{E_T^{\text{miss}}}{H_T^{\text{lep}}}$ and fit the m_{II} spectrum starting at IGeV !

No significant excess observed

→ Set limits on simplified models

Results

SRs defined by cut on $\frac{E_T^{\text{miss}}}{H_T^{\text{lep}}}$ and fit the m_{II} spectrum starting at IGeV !

Checkout M. Primavera's talk

First ATLAS result on direct higgsinos production !

Mass splitting as low as 3 GeV have limits beyond LEP

No significant excess observed

→ Set limits on simplified models

Higgsinos LSPs with Disappearing Tracks

≥1 jet (p_T > 140 GeV) and MET > 140 GeV
 Well separated jets and MET
 ≥1 pixel tracklet

Analysis Strategy

For ultra-compress Higgsino scenario:

$\tilde{\chi}_1^{\pm}$ can be long-lived

eg: $\tilde{\chi}_1^{\pm}$ lifetime of ~0.05 ns with c_{τ} ~1.5cm γ ~1

Look for "pixel tracklets" with few pixel hits, but no hits in the strip Si detector

- Unique signature requires non-standard methodologies:
 - Custom track reconstruction logic and algorithm
 - Standard track reconstruction \rightarrow Unassociated hits \rightarrow Tracklets

New IBL pixel layer in Run 2 allows for shorter tracks Increases sensitivity to shorter lifetime compared to Run I

 π^{\pm}

- Backgrounds suppressed with isolation, impact parameter cuts, and quality requirement for the tracklets
- Backgrounds estimated from data by building templates of tracklets p_{T} spectrum from each source and smearing/likelihood fitting to control samples

Results

No significant excess observed

 \rightarrow Set limits on higgsinos masses below 150 GeV

Higgsinos NLSPs with Higgs Decays

arXiv: 1806.04030 arXiv: 1804.03602

Higgsinos NLSPs with Higgs Decays

In GMSB, LSP is a nearly massless gravitino • Allows NLSP $\tilde{\chi}_1^0$ (higgsino dominated $m_{\tilde{H}} > m_h$) to decay to on-shell h/ZMissing transverse momentum (E_T^{miss}) from \tilde{G} ph/Z $h/Z \rightarrow b\bar{b}$ gives powerful 4b's final state with large branching ratio & m_{bb}~m_h $Z \rightarrow \ell \ell$ gives a powerful 4L's final state with small branching ratio but very

small SM backgrounds & m_{ll}~m_z

arXiv: 1806.04030 arXiv: 1804.03602

Analysis strategy (4b's)

- High-mass: $m_{\tilde{H}} > 300 \text{ GeV}$
 - Use E_T^{miss} triggers ($E_T^{\text{miss}} > 200 \text{ GeV}$)
 - 4 jets (\geq 3 b-jets) from the Higgs bosons
 - Paired based on ΔR_{max}^{bb} (captures both h/Z)
 - Use minimum $\Delta \phi^{4j}$ and $\overrightarrow{p}_T^{\text{miss}}$ to reduce multi jet background
 - Top background dominant

Analysis strategy (4b's)

- High-mass: $m_{\tilde{H}} > 300 \text{ GeV}$
 - Use E_T^{miss} triggers ($E_T^{\text{miss}} > 200 \text{ GeV}$)
 - 4 jets (\geq 3 b-jets) from the Higgs bosons
 - Paired based on ΔR_{max}^{bb} (captures both h/Z)
 - Use minimum $\Delta \phi^{4j}$ and $\overrightarrow{p}_T^{\text{miss}}$ to reduce multijet background
 - Top background dominant
- Low-mass: $m_{\tilde{H}} < 300 \text{ GeV}$
 - Uses b-jet triggers to recover efficiency at low E_T^{miss}
 - ≥4 b-jets (use 4 w/ highest b-tag score)
 - Paired based on ΔR^{bb} and m_{bb} consistent with two Higgs bosons of roughly the same mass
 - Main background from multi jet events.
 - Design BDT to reweigh data from 2 b-tags regions to 4 b-tags region

Analysis strategy (4b's)

- High-mass: $m_{\tilde{H}} > 300 \text{ GeV}$
 - Use E_T^{miss} triggers ($E_T^{\text{miss}} > 200 \text{ GeV}$)
 - 4 jets (\geq 3 b-jets) from the Higgs bosons
 - Paired based on ΔR_{max}^{bb} (captures both h/Z)
 - Use minimum $\Delta \phi^{4j}$ and $\overrightarrow{p}_T^{\text{miss}}$ to reduce multijet background
 - Top background dominant
- Low-mass: $m_{\tilde{H}} < 300 \text{ GeV}$
 - Uses b-jet triggers to recover efficiency at low E_T^{miss}
 - ≥4 b-jets (use 4 w/ highest b-tag score)
 - Paired based on ΔR^{bb} and m_{bb} consistent with two Higgs bosons of roughly the same mass
 - Main background from multi jet events.
 - Design BDT to reweigh data from 2 b-tags regions to 4 b-tags region

Results

Signal regions based on 6 E_T^{miss} bins within 8 m_{eff} bins

Interpretations

Pure Higgs decay

Variable Higgs/Z decay

Summary

- Light Higgsino searches well motivated by naturalness
- ATLAS has a strong program to search for Higgsino
- Multi-pronged approach with very challenging channels
 - Compress scenarios with very soft leptons, disappearing tracks
 - GMSB models sensitive to $BR(\tilde{\chi}_1^0 \rightarrow \tilde{G} + h)$
- With the LHC growing dataset, we now have exclusion starting to push beyond LEP limit from over a decay ago!

Search for Exotics Higgs Decays

Backgrounds

- 95% of the background originate from fake photon
 - Data driven estimate

Results

- No significant excess observed
- Setting limit on higgs branching ratio
 - Assume GMSB kinematics for signal
 - Constraint down to 7-10%
 - Significant improvement from Run1 (10-60%)

Soft Leptons

Dibosons: Validation regions (VRs) only

Analysis strategy: "Low-mass" $m_{\tilde{H}} < 300 \text{ GeV}$

- Main background from multi jet events.
 Use fully data driven method
- Design BDT to reweigh data from 2 b-tags regions to 4 b-tags regions
 - Differences arises due to b-tag efficiency, c/LF jet mistag, multi jet processes composition and trigger
 - Trained in 2 & 4 b-tags CRs and validated in VRs
 - Background in the 4 b-tags SR determined from data in 2 b-tag "SR" and using reweighting BDT

