

New results on R(D) and $R(D^*)$ from Belle

Kodai Matsuoka (KMI, Nagoya Univ.) for the Belle collaboration

Physics motivation

New physics search in the tree level

$$\square R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)} \tau \nu_{\tau})}{\mathcal{B}(B \to D^{(*)} \ell \nu_{\ell})} \quad (\ell = e \text{ or } \mu) \qquad \bar{b} \xrightarrow{V_{\tau}} \bar{c} \qquad \bar{b} \xrightarrow{L}$$

 Partial cancellation of theoretical uncertainties related to hadronic effects and measurement systematics.

$$P_{\tau}(D^{(*)}) = \frac{\Gamma^{+} - \Gamma^{-}}{\Gamma^{+} + \Gamma^{-}}$$

$$\Gamma^{\pm}: \text{ decay rate for } \tau \text{ helicity } \pm \frac{1}{2}$$

The Belle experiment

- Collected 772 x 10⁶ $B\bar{B}$ events at KEKB factory (1998-2010), asymmetric e^+e^- collider at $\sqrt{s}=10.58$ GeV, in Japan.
 - $e^+e^- \to \Upsilon(4S) \to B\bar{B}$ (very clean and well-known initial state)

Hermetic spectrometer capable of

- Tracking and momentum meas. of charged tracks
- Vertex meas.
- Particle ID
- γ energy meas.

$B \to D^{(*)} \tau \nu$ reconstruction in Belle

- In SM, $BF(B^+ \to \overline{D}{}^0\tau^+\nu_{\tau}) = 0.66\%$ and $BF(B^+ \to \overline{D}{}^{*0}\tau^+\nu_{\tau}) = 1.23\%$
- Difficult of reconstruction due to multiple neutrinos

Efficiency Purity

- → Need full reconstruction of the event
 - Suppress non- $B\bar{B}$ bkgd. and misreconstructed events
- → quite low efficiency

Reconstruct one of the *B*'s decaying

- 1. Hadronically ($\varepsilon_{\rm sig} \approx 0.2\%$)
- 2. Semileptonically ($\varepsilon_{\text{sig}} \approx 0.5\%$)
- 3. Inclusively $(\varepsilon_{\text{sig}} \approx \text{a few }\%)$

Select the other *B* of the signal decay with

- a $D^{(*)}$
- a charged daughter of τ
 - 1. Leptonic τ decay
 - 2. Hadronic τ decay

Previous results on R(D) and $R(D^*)$

Only two (direct) measurements with hadronic tag $\rightarrow R(D)$ with semileptonic tag will be added.

$B \to D^{(*)} \tau \nu$ with semileptonic tag

 \square Simultaneous measurement of R(D) and $R(D^*)$

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau \nu_{\tau})}{\mathcal{B}(B \to D^{(*)}\ell\nu_{\ell})} = \frac{\text{signal}}{\text{normalization}}$$
• In the previous result only $B^0 \bar{B}^0 \to (D^{*-}\ell^+)(D^{*+}\ell^-)$
• Add $B^0 \bar{B}^0 \to (D^{(*)-}\ell^+)(D^{(*)+}\ell^-)$ and $B^+B^- \to (\bar{D}^{(*)0}\ell^+)(D^{(*)0}\ell^-)$

- Analysis with the Belle II software framework
 - To reconstruct B_{tag} we can exploit FEI (Full Event Interpretation; Multivariate analysis with Boosted-Decision Tree classifier)
 → higher efficiency

Close to opening the blinded signal box

Polarization measurements

Angular distribution of τ decay

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\text{hel}}} = \frac{1}{2} \left[1 + \alpha P_{\tau}(D^*) \cos\theta_{\text{hel}} \right]$$

$$\alpha = \begin{cases} 1 & \text{for } \tau \to \pi \nu \\ 0.45 & \text{for } \tau \to \rho \nu \end{cases}$$

 \vec{p}_{τ} can be constrained to lie on the cone with a half apex angle $\theta_{\tau\pi}$:

$$\cos \theta_{\tau\pi} = \frac{2E_{\tau}E_{\pi} - m_{\tau}^2 - m_{\pi}^2}{2|\vec{p}_{\tau}||\vec{p}_{\pi}|}$$

Boost in an arbitrary direction on the cone to translate $\cos \theta_{\tau\pi}$ to $\cos \theta_{\text{hel}}$ in the τ rest frame.

Angular distribution of D^* decay

$$\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_{\mathrm{hel}}} = \frac{3}{4} \left[2F_L^{D^*} \cos^2\theta_{\mathrm{hel}} + F_T^{D^*} \sin^2\theta_{\mathrm{hel}} \right]$$

D^* rest frame

[Pros]

- All τ decays are useful.
- Not affected by cross-feeds of τ decays.

[Cons]

- Strong dependence of acceptance on $\cos \theta$ and q^2 .

Result on $P_{\tau}(D^*)$

- Hadronic tag
- Two-body τ decays $(\tau \to \pi \nu_{\tau}, \rho \nu_{\tau})$

$P_{\tau}(D^*)$ and $F_L^{D^*}$ with inclusive tag

- Select candidates for B_{sig} daughters; $D^* + (\ell \text{ or } h)$.
 - $\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau}$ • $D^{*+} \to D^0 \pi^+$ • $D^0 \to K^- \pi^+, K^- \pi^+ \pi^0, K^- \pi^+ \pi^- \pi^+$ • $V_{\tau} = V_{\mu}$ • $V_{\tau} = V_{\tau}$ • $V_{\tau} = V_{\tau}$ • $V_{\tau} = V_{\tau}$ • $V_{\tau} = V_{\tau}$
- \blacksquare Reconstruct B_{tag} inclusively from all the remaining particles.
 - Proper assignment of the particles without missing should lead to

$$M_{\rm tag} \equiv \sqrt{E_{
m beam}^2 - \left| \vec{p}_{
m tag} \right|^2} \approx M_B$$

$$\Delta E_{
m tag} \equiv E_{
m tag} - E_{
m beam} \approx 0$$

■ Expect ~300 signal events → Statistical error of $F_L^{D^*} \sim \pm 0.1$ and ~100 for $\tau^- \to \pi^- \bar{\nu}_{\tau}$ → Statistical error of $P_{\tau}(D^*) \sim \pm 0.8$

Close to opening the blinded signal box

arXiv:1712.04123

Search for $B \to \mu \nu_{\mu}$

$$\square \ln \text{SM } \mathcal{B} \Big(B^- \to \mu^- \bar{\nu}_\mu \Big) = \frac{G_F^2 m_B m_\mu^2}{8\pi} \Big(1 - \frac{m_\mu^2}{m_B^2} \Big)^2 f_B^2 |V_{ub}|^2 \tau_B = (3.80 \pm 0.31) \times 10^{-7}$$

- More precise SM prediction of $\frac{\mathcal{B}(B^- \to \tau^- \overline{\nu}_{\tau})}{\mathcal{B}(B^- \to \mu^- \overline{\nu}_{\mu})}$ than $R(D^{(*)})$
- Untagged (inclusive) method
 - Select a muon and check that the rest of event resembles B

$$\mathcal{B}(B^- \to \mu^- \bar{\nu}_{\mu}) =$$
 $(6.46 \pm 2.22 \pm 1.60) \times 10^{-7}$
Significance: 2.4 σ
[2.9, 10.7] × 10⁻⁷ at 90% CL

Summary

- \blacksquare R(D), $R(D^*)$, $P_{\tau}(D^*)$ and $F_L^{D^*}$ are good probes for new physics.
 - Precise theoretical prediction and small measurement systematics for R.
 - Combined measurement of R and polarization could discriminate the type of new physics.
 - The measurement sensitivity is limited by the statistics.
- Belle is still active in producing new results:
 - R(D) and $R(D^*)$ with semileptonic tag and a higher efficiency
 - $P_{\tau}(D^*)$ and $F_L^{D^*}$ with inclusive tag

These results will appear in this summer.

- $\blacksquare B \to \ell \nu_{\mu}$ is also sensitive to new physics and $\frac{\mathcal{B}(B^- \to \tau^- \overline{\nu}_{\tau})}{\mathcal{B}(B^- \to \mu^- \overline{\nu}_{\mu})}$ will provide additional insight on the $R(D^{(*)})$ tension.
 - $\mathcal{B}(B^- \to \mu^- \bar{\nu}_\mu) = (6.46 \pm 2.22 \pm 1.60) \times 10^{-7}$ (2.4 σ significance) with 711 fb⁻¹ data \rightarrow Promising at Belle II 50 ab ⁻¹ data