Reconstruction techniques in supersymmetry searches with the ATLAS experiment
Mark Hodgkinson
(on behalf of the ATLAS collaboration)
• Main change for run 2 is the Insertable B-Layer (IBL).

• Improved vertexing capabilities.
Supersymmetry Phase-Space

- Complicated decays combined with large mass differences, $\Delta (m) \tilde{q}, \tilde{\chi}_1^0$, can result in a boosted system with multiple quarks - reconstructed with one large-R jet.

- Low mass difference, $\Delta m \tilde{\chi}$, can result in low P_T jets or leptons.
Soft Electrons

- Electrons currently reconstructed down to 4.5 GeV - was not difficult to implement reconstruction down to these low values, main challenge was tuning selections to evaluate the efficiencies and derive data-MC scale factors.

- Possibility to go to lower electron P_T with topologically formed clusters - formed by dynamically growing cluster based on noise thresholds (previously a fixed size window was scanned across the calorimeter to find clusters above an energy threshold).

- Match track, corrected for Bremsstrahlung, to seed cluster - then add satellite clusters in fixed window. Better electron resolution (than previous sliding window clusters) because this better captures resolution tails caused by Bremsstrahlung photon energy deposits in phi direction.
Soft Muons

- Four categories - Combined (CB) fit of ID and muon track, Segment Tagged if ID track matched to Muon Segment, Calorimeter Tagged if ID track matched to MIP calorimeter deposit, Extrapolated using only MS track with a loose compatibility with the IP.

- Reconstruction can currently go down to below 3 GeV (average energy loss in calorimeter is 3 GeV) - challenges to get here included improving reconstruction using only hits in innermost MS station whilst controlling the fake rate and commissioning of new partial-event building triggers to select 1 muon + 1 track signatures.

- Current published SUSY analyses use muons as far down as 4 GeV - future analyses will be able to go down to 3 GeV (see Zhi Zheng’s poster and Muon-2018-005)

ATLAS Preliminary Simulation
\(\sqrt{s} = 13 \text{ TeV}, 3 \text{ GeV} < p_T < 6 \text{ GeV} \)
- Medium, prompt
- LowPt, prompt
- Medium, fakes
- LowPt, fakes

Muon-2017-001

- ATLAS Preliminary
- \(\sqrt{s} = 13 \text{ TeV}, 33.3 \text{ fb}^{-1} \)
- \(J/\psi \rightarrow \mu\mu \)
- Medium muons
- No TRT selection applied

Muon-2018-005

- Data / MC
- \(p_T [4-15 \text{ GeV}] \)
Soft Leptons

- Analysis targeting gluino decay via sleptons with 7 GeV lepton P_T thresholds shows significant gains in sensitivity (mass splitting of \sim15 GeV c.f. \sim70 GeV without low P_T Signal Region (SR)).

- Further gains possible with new lower thresholds - much of background is fake lepton from heavy flavour decays. Key to improving the performance lies with lepton isolation and impact parameters.

- New ideas being studied include prompt lepton tagger to replace isolation algorithms, which could potentially have better performance for rejection of heavy flavour decays.

Using lowest supported lepton thresholds for muons (4 GeV) and electrons (4.5 GeV) key to constrain models with slepton-neutralino mass differences down to 1 GeV.

arXiv:1805.11381

Reclustered jets

- “Standard” jet finding in ATLAS uses the Anti-Kt algorithm with a radius parameter of 0.4
- In boosted topologies the two jets could be close together - then use larger radius jets.
- Two strategies investigated - run jet finding with large radius parameter (e.g. 1.0) or cluster the existing calibrated 0.4 jets into a larger jet (known as reclustering).
- Reclustering can use the detailed calibrations and uncertainties from the 0.4 jets - allows more flexibility in the parameters of the large R jet because no dedicated calibration is needed.
Top Tagging

- In stop production, with one lepton, we can tag hadronic top decays to suppress di-leptonic top pair backgrounds.

- Recluster 0.4 jets into 3.0 jets and then reduce radius based on the jet P_T, with assumption on the mass (top in this case).

- If this results in a large change in jet P_T, then the jet is discarded.

- Finally one can place a cut on the reclustering jet mass.

\[R(P_T) = 2 \frac{m_{top}}{P_T} \]
• Recluster 0.4 jets into 0.8 jets with AntiKt algorithm.

• Sum mass of jets with $P_T > 200$ GeV and $|\eta| < 2.0$ - typically large in models with four top quarks, whilst largest background has only two top quarks.
Flavour Tagging

Production of third generation squarks leads to decay signatures with charm or bottom quarks.

Boosted Decision Tree analyses output of Impact Parameter, Secondary Vertex Finding and Decay Chain Multi-Vertex algorithms.

Significant improvements w.r.t Run 1 in performance illustrated with 77% fixed efficiency Working Point.
• Charm tagging algorithms use additional variables, related to different kinematics of charm and b-hadron decays (such as invariant mass of secondary tracks, secondary track rapidities, distance from primary to secondary vertex, fraction of jet track energy carried by secondary tracks etc), to discriminate between b and c flavour jets.

• New result from Run 2 on stop to charm decays recently released.
Not reviewed, for internal circulation only

Many new ideas being investigated in ATLAS - particle flow based jets and MET, low P_{T} phase space.

*Only a selection of the available mass limits on new states of simplified models, c.f. refs. for the assumptions made.

Long-lived 3-generation squarks in Inclusive Searches July 2018

Conclusions

Reconstruction algorithms being used to push into more extreme parts of SUSY model phase space.

More results to come from ATLAS SUSY searches, some of which will take advantage of the best performing new reconstruction techniques (as well as any improvements in existing algorithms to come!)

- Many new ideas being investigated in ATLAS - particle flow based jets and MET, low P_{T} b-tagging with track, machine learning for reconstruction (neutral, BDT, image recognition etc.)

Reference: ATLAS-CONF-2018-003

ATLAS Preliminary Reference

ATLAS SUSY Searches - 95% CL Lower Limits

<table>
<thead>
<tr>
<th>Model</th>
<th>Mass (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>1709.04183, 1711.11520, 1708.03247</td>
</tr>
<tr>
<td>T_{b-}</td>
<td>1710.04901, 1604.04520</td>
</tr>
<tr>
<td>SUSY</td>
<td>1706.03731</td>
</tr>
<tr>
<td>Other</td>
<td>1708.09266, 1708.07875</td>
</tr>
<tr>
<td>DB</td>
<td></td>
</tr>
</tbody>
</table>

s = 7,8,13 TeV