Searches for exotic particles at NA62

Matthew Moulson – INFN Frascati
For the NA62 Collaboration

ICHPE 2018
Seoul – 7 July 2018
Why search for exotic particles?

No hints of new physics at high energy so far?

- Strong constraints on SUSY, extra dimensions, technicolor, etc.
- Constraints on new Z' bosons push new gauge groups into multi-TeV territory

Yet, SM is obviously incomplete:

- **Neutrino masses and oscillations**
 - See-saw mechanism with RH neutrinos with masses from 10^{-9} to 10^{15} GeV, with Yukawa couplings to the Higgs and SM leptons?

- **Matter-antimatter asymmetry**
 - Requires violation of baryon number, C, and CP in the early universe. Not enough non-equilibrium CP violation in the SM to explain it.

- **Dark Matter**
 - SM particles alone cannot account for the observed matter in the universe
 - Masses for viable DM candidates: 10^{-31} GeV (ultralight scalars) to 10^{20} GeV (black holes) (10 keV to 100 TeV if from thermal origin)

- **Strong CP problem**
 - Apparent conservation of CP in QCD requires fine tuning
 - Axion (pseudo-Goldstone boson of spontaneously broken Peccei-Quinn symmetry) may resolve strong CP problem while providing DM candidate
Searches for exotic particles

Distinguish searches by mass scale:

1. **Sub-eV**: Search for axions or axion-like particles (ALPs) via EDMs or in direct laboratory searches

2. **MeV-GeV**: Search for heavy neutrinos, ALPs, light DM particles and mediators (dark photons, dark scalars) in fixed-target or collider experiments

3. **10-1000 TeV**: Search for NP in clean and very rare flavor processes or in EDMs

Much attention has been dedicated to TeV-scale models and ideas. Need a systematic approach for NP at the intensity frontier.

Adapted from M. Pospelov

NA62 designed to be sensitive to K^+ BRs of order 10^{-12}

Well suited to explore new physics portals in the MeV-GeV scale.

<table>
<thead>
<tr>
<th>Portal</th>
<th>Coupling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark photon</td>
<td>$\frac{\varepsilon}{2\cos\theta_W} F'_{\mu\nu} B^{\mu\nu}$</td>
</tr>
<tr>
<td>Scalar</td>
<td>$(\mu S + \lambda S^2) H^\dagger H$</td>
</tr>
<tr>
<td>Axion</td>
<td>$\frac{a}{f_a} F'{\mu\nu} \tilde{F}^{\mu\nu}, \frac{a}{f_a} G{i,\mu\nu} \tilde{G}^{i\mu\nu}, \frac{\partial_{\mu} a}{f_a} \bar{\psi} \gamma^\mu \gamma^5 \psi$</td>
</tr>
<tr>
<td>Neutrino/HNL</td>
<td>$\gamma_N LHN$</td>
</tr>
</tbody>
</table>

Searches for exotic particles at NA62 – M. Moulson (Frascati) – ICHEP 2018 – Seoul – 7 July 2018
The NA62 experiment at the SPS

Primary beam:
- $p = 400$ GeV SPS protons
- 10^{12} protons/effective second

Secondary beam:
- $p = 75$ GeV positive, unseparated
- Total rate: 750 MHz
- K^+ rate: 45 MHz

- Large angle photon vetoes
- OPAL lead glass
- 1 atm Ne
- Dipole spectrometer
- 4 straw-tracker stations
- Forward γ veto
- NA48 LKr
- KTAG
- CHANTI
- Forward γ veto
- SAC
- IRC
- GIGATRACKER
- Beam tracking Si pixels, 3 stations
- MUV
- μ veto
- Fe/scint
The NA62 experiment at the SPS

- Beam and secondary particle tracking

Beam tracking:
- Si pixels, 3 stations
- GIGATRACKER: $\sigma_i < 200$ ps

Kinematic rejection of 10^4 for $K^+ \rightarrow \mu^+\nu$ and $K^+ \rightarrow \pi^+\pi^0$ decays

Fiducial volume $\sim 60m$ 10$^{-6}$ mbar

5 MHz K^+ decays

Dipole spectrometer:
- 4 straw-tracker stations

LAV
- Large angle photon vetoes
- OPAL lead glass

RICH
- RICH μ/π ID
- 1 atm Ne

MUV
- μ veto
- Fe/scint

Forward γ veto
- NA48 LKr

KTAG
- Differential Cerenkov for K^+ ID in beam

CHANTI
- Charged veto

GIGATRACKER

STRAW
- IRC

SAC

K0

0 50 100 150 200 250 m

Fiducial volume $\sim 60m$ 10$^{-6}$ mbar
The NA62 experiment at the SPS

- Hermetic photon vetoes

- Photon veto rejection of 10^8 for π^0 from $K^+ \to \pi^+\pi^0$ with $E(\pi^0) > 40$ GeV
The NA62 experiment at the SPS

- Beam and secondary particle identification
- Muon vetoes

- Beam tracking
 - Si pixels, 3 stations
 - Differential Cerenkov for K^+ ID in beam

- Charged veto

- KTAG $\sigma_t < 100$ ps

- Large angle photon vetoes
 - OPAL lead glass

- Forward γ veto
 - OPAL lead glass
 - 1 atm Ne

- μ vs π rejection of 10^7 for $15 < p(\pi^+) < 35$ GeV

- μ veto
 - Fe/scint

- Dipole spectrometer
 - 4 straw-tracker stations
 - LKr

- RICH
 - μ/π ID
 - 1 atm Ne

- Forward γ veto
 - NA48 LKr

- MUV
 - μ veto
 - Fe/scint

- Fiducial volume ~ 60m
 - 10^{-6} mbar

- 5 MHz K^+ decays

- Search for exotic particles at NA62 – M. Moulson (Frascati) – ICHEP 2018 – Seoul – 7 July 2018
Exotic particle searches at NA62

Standard data taking during $K^+ \rightarrow \pi^+ \nu \nu$

• Possible approaches:

 1. Invisible exotic particles seen as missing mass from K decays

 E.g. $K^+ \rightarrow \pi^+ X$, with $X =$ dark photon, HNL, etc.

 2. Exotic particles produced in target and reconstructed in FV

 • Dedicated triggers ($\mu \mu$, ee, $\pi \mu$, πe) using small fraction of $K^+ \rightarrow \pi^+ \nu \nu$ bandwidth

 • Currently existing samples on order of 10^{17} pot

1 λ_{int} Be target for standard data taking

Fiducial volume ~ 60 m

Reasonable acceptance for long-lived states
Exotic particle searches at NA62

Data taking with dumped beam

- Exotic particles produced from interactions of 400 GeV protons in closed collimator
- Dedicated data taking for short periods during $K^+ \rightarrow \pi^+ \nu \nu$ running

 Target lifted and collimator closed in 15-minute, reversible operation
- Background reduced enough to reconstruct exotic final states with open kinematics (proven for 4×10^{15} pot)
- Contemplate longer periods of dedicated data-taking in dump mode $\rightarrow 10^{18}$ pot

$22 \lambda_{\text{int}}$ Cu collimator (TAX) closed for dump-mode data taking

Fiducial volume ~ 60 m
Reasonable acceptance for long-lived states

Searches for exotic particles at NA62 – M. Moulson (Frascati) – ICHEP 2018 – Seoul – 7 July 2018
Dark photons

Simplest hidden sector model introduces a new U(1) gauge symmetry with one extra gauge boson: the dark photon A'

$$\mathcal{L}_{\text{vector}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} - \frac{\epsilon}{2 \cos \theta_W} F'_{\mu \nu} B_{\mu \nu}$$

$$\mathcal{L}_{\text{DS}} = -\frac{1}{4} (F'_{\mu \nu})^2 + \frac{1}{2} m_{A'}^2 (A'_\mu)^2 + |(\partial_\mu + i g D A'_\mu) \chi|^2 + ...$$

Interaction of A' with visible sector through kinetic mixing with SM hypercharge

- QED-like interactions with SM fermions
- Free parameters: ϵ and $m_{A'}$

NA62 can search for dark photons:

- With no decays to SM particles, in $K^+ \rightarrow \pi^+ X$ or $K^+ \rightarrow \pi^+ \pi^0$ with $\pi^0 \rightarrow \gamma X$
- With dedicated trigger for decays such as $A' \rightarrow e^+ e^-$ or $A' \rightarrow \mu^+ \mu^-$
Search for $K^{+} \rightarrow \pi^{+}\pi^{0}$ with $\pi^{0} \rightarrow \gamma A'$ and A' invisible

- Sensitivity for $m_{A'} < m_{\pi^{0}}$
- Signal: 1 track + 1 γ + missing energy
- Search for missing mass peak corresponding to A'
- Main background: $\pi^{0} \rightarrow \gamma\gamma$ with 1 γ lost

Preliminary result with 5% of 2016 data sample

- 1.5×10^{10} K^{+} decays
- Background from negative m_{miss} resolution tail from control data
- No significant excess observed
- 90% CL UL within expected statistical uncertainty band
- Analysis with full 2016 data set in progress
Dark photons with visible decays

Search for A' produced in target or dump with decay to e^+e^- or $\mu^+\mu^-$ in FV
- Meson decays: From primary beam secondaries, e.g., $pN \rightarrow X\pi^0$, $\pi^0 \rightarrow \gamma A'$
- Bremsstrahlung from primary beam: $pN \rightarrow XA'$

Sensitivity estimate assumes:
- 10^{18} pot on Be target
- Production in meson decays and bremsstrahlung
- Reconstruction of both e^+e^- and $\mu^+\mu^-$ channels
- 90% CL exclusion in zero-background assumption

Sensitivity estimate does not include contributions from:
- A' from QCD processes
- A' produced in TAX

Data from 2016-2017 runs
- 3×10^{17} pot with $\mu\mu$ trigger
- 5×10^{16} pot with ee trigger
Dark scalar particles

Dark sector coupled to Higgs by new singlet scalar field \(S \)

Expansion of the field \(H \) around VEV \(v \) gives mixing of physical \(h \) and \(S \) with parameter \(\theta \)

Sensitivity estimate assumes:

- **10^{18}** pot on Be target
- Reconstruction of 2-track final states \((ee, \mu\mu, \pi\pi, KK)\) with vertex pointing back to TAX:
 \(S \) produced most efficiently by decays of \(B \)-mesons from interactions in TAX
- 90\% CL exclusion in zero-background assumption

Data from 2016-2017 runs

- **3 \times 10^{17}** pot with \(\mu\mu \) trigger
- **5 \times 10^{16}** pot with \(ee \) trigger

NA62 estimated sensitivity for 10^{18} pot
Axion-like particles

Light pseudoscalar ALP may act as a mediator between SM and dark matter

\[\mathcal{L}_{\text{axion}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} + \frac{a}{4f_\gamma} F_{\mu\nu} \tilde{F}_{\mu\nu} + \frac{a}{4f_G} \text{Tr} G_{\mu\nu} \tilde{G}_{\mu\nu} + \frac{\partial \mu a}{f_l} \sum_\alpha \bar{l}_\alpha \gamma_\mu \gamma_5 l_\alpha + \frac{\partial \mu a}{f_q} \sum_\beta \bar{q}_\beta \gamma_\mu \gamma_5 q_\beta \]

NA62 can explore ALP masses in the MeV-GeV range

Focus on pseudoscalar ALPs whose dominant interaction is with photons:
- Dedicated running in beam dump mode (TAX closed)
- Primakoff (\(\gamma\gamma\) fusion) production from interaction in TAX with \(a \rightarrow \gamma\gamma\) decay
- ALP produced at low \(p_\perp\) \(\rightarrow\) good acceptance even if detector far from production point

Sensitivity estimate assumes:
- \(10^{18}\) pot on closed TAX
- 90% CL exclusion in zero-background assumption

Significant results obtainable with only 1 day of data taking (1.3 \(\times\) \(10^{16}\) pot)
- Analysis of 2017 data in progress:
 - 5 \(\times\) \(10^{15}\) pot in dump mode

\[g_{\gamma\gamma} = 1/f_\gamma \]
HNLs with visible decays

\[\mathcal{L}_{DS} \] may include mass terms for one or more HNLs \(N \) (Dirac or Majorana)

\(N_s \) mix with \(\nu_{1,2,3} \) to give \(\nu_{e,\mu,\tau} + \text{RH "sterile" neutrinos} \)

Search for \(N \) produced in TAX with decays to two-track final states:

- Assume \(10^{18} \) pot on closed TAX
- Reconstruct two-track final states, including open channels
- 90\% CL exclusion in zero-background assumption
- Derive sensitivity for coupling scenarios in Shaposhnikov & Gorbunov 0705.1729v2

Data from 2016-2017 runs: \(10^{17} \) pot with \(\pi\mu \) trigger; few \(10^{16} \) pot with \(\pi e \) trigger

\[\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{DS} + \sum F_{\alpha I} (\bar{L}_\alpha H) N_I \]

\[\nu_\alpha \rightarrow \sum I U_{\alpha I} N_I \]
Summary and outlook

Main goal of NA62 is to measure $\text{BR}(K^+ \rightarrow \pi^+\nu\nu)$ with 10% accuracy

- Physics runs in 2016, 2017, and 2018 – data taking in progress!

Hidden-sector physics program before LS2:

- Dedicated triggers compatible with $\pi\nu\nu$ program to search for dark photons, dark scalars, and HNLs
- Short, dedicated beam-dump runs to search for ALP decays to $\gamma\gamma$

After LS2, collection of 10^{18} pot in beam-dump mode will provide sensitivity to various hidden-sector models

- Expected sensitivity beyond that of other initiatives with same time scale

Results from the current NA62 run will be exploited to:

- Evaluate background rejection capability up to $10^{17} \rightarrow 10^{18}$ pot
- Define setup optimizations for future beam-dump mode running, including, if needed, minor modifications to the existing apparatus
The zero-background assumption

Sensitivity estimates for channels with visible decays (dark photons, scalars, ALPs, HNLs) are based on zero-background assumption for 10^{18} pot

- Baseline selection: 2 tracks, opposite sign, vertex far from beamline

Test zero-background assumption using combinatorial background to $A' \rightarrow \mu\mu$ from halo muons

Halo rates from upstream decays/interactions: 3 MHz μ^+ and 150 kHz μ^-

Cuts:
- Track quality & acceptance
- Vertex quality
- Total momentum from target
- Veto extra LKr energy
- Photon veto: SAC/IRC/LAV
- Upstream charged particle veto (CHANTI)

No events selected in signal region for 10^{15} pot, even with standard K^+ beam
Assumption valid for 10^{15} pot in standard running (4 \times 10^{15} pot in dump mode)