Searches for exotic particles at NA62

Matthew Moulson – INFN Frascati For the NA62 Collaboration

ICHEP 2018 Seoul – 7 July 2018

Why search for exotic particles?

No hints of new physics at high energy so far?

- Strong constraints on SUSY, extra dimensions, technicolor, etc.
- Constraints on new Z' bosons push new gauge groups into multi-TeV territory

Yet, SM is obviously incomplete:

- Neutrino masses and oscillations
 - See-saw mechanism with RH neutrinos with masses from 10⁻⁹ to 10¹⁵ GeV, with Yukawa couplings to the Higgs and SM leptons?
- Matter-antimatter asymmetry
 - Requires violation of baryon number, *C*, and *CP* in the early universe. Not enough non-equilibrium *CP* violation in the SM to explain it.
- Dark Matter
 - SM particles alone cannot account for the observed matter in the universe
 - Masses for viable DM candidates: 10⁻³¹ GeV (ultralight scalars) to 10²⁰ GeV (black holes) (10 keV to 100 TeV if from thermal origin)
- Strong CP problem
 - Apparent conservation of CP in QCD requires fine tuning
 - Axion (pseudo-Goldstone boson of spontaneously broken Peccei-Quinn symmetry) may resolve strong CP problem while providing DM candidate

Searches for exotic particles

Distinguish searches by mass scale:

- Sub-eV: Search for axions or axion-like particles (ALPs) via EDMs or in direct laboratory searches
- MeV-GeV: Search for heavy neutrinos,
 ALPs, light DM particles and mediators
 (dark photons, dark scalars) in fixed-target
 or collider experiments
- 3 10-1000 TeV: Search for NP in clean and very rare flavor processes or in EDMs

Much attention has been dedicated		
to TeV-scale models and ideas		
Need a systematic approach for		
NP at the intensity frontier		

	Portal	Coupling
	Dark photon	$-\frac{\varepsilon}{2\cos\theta_W}F'_{\mu\nu}B^{\mu\nu} \\ (\mu S + \lambda S^2)H^{\dagger}H$
	Scalar	$(\mu S + \lambda S^2) H^{\dagger} H$
	Axion	$\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu}, \frac{a}{f_a}G_{i,\mu\nu}\tilde{G}_i^{\mu\nu}, \frac{\partial_{\mu}a}{f_a}\bar{\psi}\gamma^{\mu}\gamma^{5}\psi$
	Neutrino/HNL	$y_N LHN$

NA62 designed to be sensitive to K^+ BRs of order 10^{-12} Well suited to explore new physics portals in the MeV-GeV scale

Exotic particle searches at NA62

Standard data taking during $K^+ \rightarrow \pi^+ \nu \nu$

- Possible approaches:
 - 1. Invisible exotic particles seen as missing mass from K decays E.g. $K^+ \to \pi^+ X$, with X = dark photon, HNL, etc.
 - 2. Exotic particles produced in target and reconstructed in FV
 - Dedicated triggers ($\mu\mu$, ee, $\pi\mu$, πe) using small fraction of $K^+ \to \pi^+ \nu \nu$ bandwidth
 - Currently existing samples on order of 10¹⁷ pot

Exotic particle searches at NA62

Data taking with dumped beam

- Exotic particles produced from interactions of 400 GeV protons in closed collimator
- Dedicated data taking for short periods during $K^+ \to \pi^+ \nu \nu$ running Target lifted and collimator closed in 15-minute, reversible operation
- Background reduced enough to reconstruct exotic final states with open kinematics (proven for 4×10^{15} pot)
- Contemplate longer periods of dedicated data-taking in dump mode → 10¹⁸ pot

Dark photons

Simplest hidden sector model introduces a new U(1) gauge symmetry with one extra gauge boson: the dark photon A'

$$\mathcal{L}_{\text{vector}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} - \frac{\epsilon}{2\cos\theta_W} F'_{\mu\nu} B_{\mu\nu}$$

$$\mathcal{L}_{\text{DS}} = -\frac{1}{4} (F'_{\mu\nu})^2 + \frac{1}{2} m_{A'}^2 (A'_{\mu})^2 + |(\partial_{\mu} + ig_D A'_{\mu})\chi|^2 + \dots$$

Interaction of A' with visible sector through kinetic mixing with SM hypercharge

- QED-like interactions with SM fermions
- Free parameters: ε and $m_{A'}$

NA62 can search for dark photons:

- With no decays to SM particles, in $K^+ \to \pi^+ X$ or $K^+ \to \pi^+ \pi^0$ with $\pi^0 \to \gamma X$
- With dedicated trigger for decays such as $A' \rightarrow e^+e^-$ or $A' \rightarrow \mu^+\mu^-$

Dark photons with invisible decays **NA62**,

Search for $K^+ \to \pi^+ \pi^0$ with $\pi^0 \to \gamma A'$ and A' invisible

- Sensitivity for $m_{A'} < m_{\pi 0}$
- Signal: 1 track + 1 γ + missing energy
- Search for missing mass peak corresponding to A'
- Main background: $\pi^0 \rightarrow \gamma \gamma$ with 1 γ lost

Preliminary result with 5% of 2016 data sample

- 1.5 × $10^{10} K^+$ decays
- Background from negative m_{miss} resolution tail from control data
- No significant excess observed 90% CL UL within expected statistical uncertainty band
- Analysis with full 2016 data set in progress

Dark photons with visible decays

Search for A' produced in target or dump with decay to e^+e^- or $\mu^+\mu^-$ in FV

- Meson decays: From primary beam secondaries, e.g., $pN \to X\pi^0$, $\pi^0 \to \gamma A'$
- Bremsstrahlung from primary beam: $pN \rightarrow XA'$

Sensitivity estimate assumes:

- 10¹⁸ pot on Be target
- Production in meson decays and bremsstrahlung
- Reconstruction of both e^+e^- and $\mu^+\mu^-$ channels
- 90% CL exclusion in zerobackground assumption

Sensitivity estimate does not include contributions from:

- A' from QCD processes
- A' produced in TAX

Data from 2016-2017 runs

- 3 × 10¹⁷ pot with $\mu\mu$ trigger
- 5 × 10^{16} pot with *ee* trigger

NA62 estimated sensitivity for 10¹⁸ pot

Dark scalar particles

Dark sector coupled to Higgs by new singlet scalar field S

Expansion of the field H around VEV v gives mixing of physical h and S with parameter θ

$$\mathcal{L}_{\text{scalar}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} - (\mu S + \lambda S^2) H^{\dagger} H$$

$$\mathcal{L}_{DS} = S\bar{\chi}\chi + \dots \qquad \theta = \frac{\mu v}{m_h^2 - m_S^2}$$

Sensitivity estimate assumes:

- 10¹⁸ pot on Be target
- Reconstruction of 2-track final states (ee, μμ, ππ, KK) with vertex pointing back to TAX:
 S produced most efficiently by decays of B-mesons from interactions in TAX
- 90% CL exclusion in zerobackground assumption

Data from 2016-2017 runs

- 3 × 10¹⁷ pot with $\mu\mu$ trigger
- 5 × 10^{16} pot with ee trigger

NA62 estimated sensitivity for 10¹⁸ pot

Axion-like particles

Light pseudoscalar ALP may act as a mediator between SM and dark matter

$$\mathcal{L}_{\text{axion}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} + \frac{a}{4f_{\gamma}} F_{\mu\nu} \tilde{F}_{\mu\nu} + \frac{a}{4f_{G}} \text{Tr} G_{\mu\nu} \tilde{G}_{\mu\nu} + \frac{\partial_{\mu} a}{f_{l}} \sum_{\alpha} \bar{l}_{\alpha} \gamma_{\mu} \gamma_{5} l_{\alpha} + \frac{\partial_{\mu} a}{f_{q}} \sum_{\beta} \bar{q}_{\beta} \gamma_{\mu} \gamma_{5} q_{\beta}$$

NA62 can explore ALP masses in the MeV-GeV range

Focus on pseudoscalar ALPs whose dominant interaction is with photons:

- Dedicated running in beam dump mode (TAX closed)
- Primakoff ($\gamma\gamma$ fusion) production from interaction in TAX with $a \rightarrow \gamma\gamma$ decay
- ALP produced at low $p_{\perp} \rightarrow$ good acceptance even if detector far from production point

Sensitivity estimate assumes:

- 10¹⁸ pot on closed TAX
- 90% CL exclusion in zerobackground assumption

Significant results obtainable with only 1 day of data taking $(1.3 \times 10^{16} \text{ pot})$

- Analysis of 2017 data in progress:
 - 5×10^{15} pot in dump mode

HNLs with visible decays

\mathcal{L}_{DS} may include mass terms for one or more HNLs N (Dirac or Majorana)

Ns mix with $v_{1,2,3}$ to give $v_{e,\mu,\tau}$ + RH "sterile" neutrinos

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{DS}} + \sum_{I} F_{\alpha I}(\bar{L}_{\alpha}H)N_{I}$$
 $u_{\alpha} \to \sum_{I} U_{\alpha I}N_{I}$

Search for N produced in TAX with decays to two-track final states:

- Assume 10¹⁸ pot on closed TAX
- Reconstruct two-track final states, including open channels
- 90% CL exclusion in zero-background assumption
- Derive sensitivity for coupling scenarios in Shaposhnikov & Gorbunov 0705.1729v2

Data from 2016-2017 runs: 10^{17} pot with $\pi\mu$ trigger; few 10^{16} pot with πe trigger

Summary and outlook

Main goal of NA62 is to measure BR($K^+ \rightarrow \pi^+ \nu \nu$) with 10% accuracy

Physics runs in 2016, 2017, and 2018 – data taking in progress!

Hidden-sector physics program before LS2:

- Dedicated triggers compatible with πvv program to search for dark photons, dark scalars, and HNLs
- Short, dedicated beam-dump runs to search for ALP decays to γγ

After LS2, collection of 10¹⁸ pot in beam-dump mode will provide sensivity to various hidden-sector models

Expected sensitivity beyond that of other initiatives with same time scale

Results from the current NA62 run will be exploited to:

- Evaluate background rejection capability up to 10¹⁷ → 10¹⁸ pot
- Define setup optimizations for future beam-dump mode running, including, if needed, minor modifications to the existing apparatus

The zero-background assumption

Sensitivity estimates for channels with visible decays (dark photons, scalars, ALPs, HNLs) are based on zero-background assumption for 10¹⁸ pot

• Baseline selection: 2 tracks, opposite sign, vertex far from beamline

Test zero-background assumption using combinatorial background to $A' \rightarrow \mu\mu$ from halo muons

Halo rates from upstream decays/ interactions: 3 MHz μ^+ and 150 kHZ μ^-

Cuts:

- Track quality & acceptance
- Vertex quality
- Total momentum from target
- Veto extra LKr energy
- Photon veto: SAC/IRC/LAV
- Upstream charged particle veto (CHANTI)

 ${\bf z}$ of closest approach ${\bf p}_{\text{tot}}$ to beamline [cm]

No events selected in signal region for 10^{15} pot, even with standard K^+ beam Assumption valid for 10^{15} pot in standard running (4 × 10^{15} pot in dump mode)