# Electroweak and QCD aspects in V+Jets

7 July 2018

Henning Kirschenmann (Helsinki Institute of Physics) on behalf of the CMS Collaboration





# Motivation

- Precision measurements of [differential] V+Jets production cross sections stringent tests of SM predictions
  - sensitive to higher order (QCD and EWK effects)
  - sensitive to non perturbative effects (e.g. particle emission, parton shower)
  - also targeting explicitly EWK production mode (VBF, soft QCD modeling)
- Comparison of the measurements with predictions motivates additional Monte Carlo (MC) generator development and improves our understanding of the prediction uncertainties.
- V+jets is dominant background for:
  - Top quark measurements
  - Higgs physics
  - VH (H→bb)

Here:

3

Searches for new physics

### W+Jets

Z+Jets

Phys. Rev. D 96 (2017) 072005 2015 data arXiv:1804.05252 2015 data +γ+Jets

arXiv:1807.00782 2015 data <u>Submitted: 3 July</u> +EWK Z + 2 Jets

arXiv:1712.09814 2016 data <u>Accepted (EPJC): 5 July</u>

# Theoretical predictions for W/Z+jet cross sections

### MADGRAPH5\_AMC@NLO + Pythia8

- LO: up to 4 partons; kT-MLM merging ME—>PS
- NNPDF3.0 LO PDF, CUETP8M1 Pythia8 tune
- NLO: up to 2 partons; FxFx jet merging ME—> PS
- NNPDF3.0 NLO PDF, CUETP8M1 Pythia8 tune

### GENEVA 1.0-RC2 (GE) (for Z+jet only)

- NNLO matrix elements + NNLL resummation
- PDF4LHC15 NNLO, CUETP8M1 Pythia8 tune

### Z/W+1 jet fixed order NNLO

 Correction for hadronization and multiple parton interaction computed with NLO MG5 aMC+Pythia8 as differential scaling factors; CT14 (Z)/ NNPDF 3.0 NNLO (W)

| Samples     | 0j  | 1j   | 2j  | Зј | 4j | >4j | Cross section [pb] |
|-------------|-----|------|-----|----|----|-----|--------------------|
| LO MG5_aMC  | LO  | LO   | LO  | LO | LO | PS  | 5787               |
| NLO MG5_aMC | NLO | NLO  | NLO | LO | PS | PS  | 5931               |
| Geneva      | NLO | NLO  | LO  | PS | PS | PS  | 5940               |
| Z/W+1@NNLO  | -   | NNLO | NLO | LO | -  | -   | 134.6              |





#### arXiv:1804.05252

# Differential Z+jet cross sections



- Ieptons: p<sub>T</sub>>30 GeV; lηI<2.4</p>
- m(II)=91±20 GeV
- p<sub>T</sub>(jet)>30 GeV; lηl<2.4; ΔR(jet,l)>0.4
- pp collisions 2015: 2.19/fb
- Backgrounds estimated from simulation
- ttbar dominant background at high jet multiplicities
- Unfolding to generator level for many observables: N<sub>Jets</sub>; p<sub>T</sub>(jet1/2/3); y(jet1/2/3);
  HT; p<sub>T</sub> balance; jet-Z balance (JZB)



### **Z+Jets**

#### arXiv:1804.05252

# Differential Z+jet cross sections



- GE: shape at low p<sub>T</sub>(Z) and p<sub>T</sub>(jet1) dependence well modelled
- LO MG5\_aMC: significant differences
- NLO MG5\_aMC and Z+1@NNLO: NLO
- 6 needed to describe measurement



**W+Jets** 

Phys. Rev. D 96 (2017) 072005

# Differential W+jet cross sections



- p<sub>T</sub>(μ)>30 GeV; lηl<2.4; M<sub>T</sub>> 50 GeV
- p⊤(jet)>30 GeV; lηl<2.4; ΔR(jet,l)>0.4
- pp collisions 2015: 2.2/fb
- Backgrounds estimated from simulation (QCD multijet data-driven)
- ttbar dominant background at high jet multiplicities
- Unfolding to generator level for many observables: N<sub>Jets</sub>; p<sub>T</sub>(jet1/2/3/4); y(jet1/2/3/4); HT; ΔΦ(μ,jet1/2/3/4); ΔR(μ,closest jet)



7

**W+Jets** 

# Differential W+jet cross sections

 $p_{T}$  of leading jet than LO



### W+Jets

Phys. Rev. D 96 (2017) 072005

# Differential W+jet cross sections

### Angular observables

- ΔΦ(μ,jet1): sensitive to the implementation of particle emissions and other (non) perturbative effects modeled by PS algorithms in event generators
- ΔR(µ,closest jet): probes contribution of electroweak radiative processes to W+jets
- Decent modelling of angular observables by all predictions:
  LO MG5\_aMC, NLO MG5\_aMC, W+1@NNLO



Large  $\Delta R$ : W balanced by hadronic recoil

#### arXiv:1807.00782

# Differential y+jet cross sections



- Photon yields are extracted using the shape of BDT distributions.
- Template for background taken from control region
- Measured inclusive (+ jets) cross sections double (triple) differential in photon E<sub>T</sub>, y, (rapidity of the highest pT jet), are compared to NLO QCD calculations (Jetphox 1.3.1)





- Cross-sections in agreement with NLO (Jetphox 1.3.1) within uncertainties, in all kinematic regions.
- Expect sensitivity to gluon PDFs over a wide range of (x,Q<sup>2</sup>)
- The ratio of the theoretical predictions to data with different PDF sets is studied. Observed differences are small, and within theoretical uncertainties.
- With precise NNLO calculations these measurements could be used to constraint the gluon and other PDFs.

### EWK Z + 2 Jets

# Electroweak Z+2 jets



### **Properties of EW Zjj signal events:**

- well-separated jets in rapidity with large m<sub>jj</sub>, and central decay of Z boson
- suppressed color flow in the region between the two jets (low hadronic activity in the rapidity interval)

### **Basic event selection:**

- p<sub>T</sub>(j) > 25 GeV; m<sub>jj</sub> > 120 GeV; p<sub>T</sub>(I1/I2) > 30/20 GeV; m(II)=91±15 GeV
- BDT with many input observables for signal extraction
- pp collisions 2016: 35.9/fb
- The first observation for this process at 12 13 TeV
- 10<sup>6</sup> ۲̈ 60 10<sup>5</sup> Z + jets Events / 10<sup>4</sup> EW Zij  $10^{3}$ MC stat. unc. 10<sup>2</sup> 10 / MC Data 2000 500 1000 1500 2500 3000 m<sub>ii</sub> (GeV)



### EWK Z + 2 Jets

# Electroweak Z+2 jets



Gap veto efficiency: fraction of events with a measured gap activity below a given threshold

- Data disfavour background only predictions
- Bkg+Signal model with Herwig does much better at low gap activity values



- Limits on anomalous trilinear gauge couplings
- No evidence for aTGC is found. The most stringent constraints on cWWW to date are extracted

14

# Conclusions



### Z/W/γ+Jets

- Differential cross section measurements are stringent tests of SM predictions; high experimental precision
  - NLO essential to describe jet multiplicity, transverse momentum of the leading jet and Z boson
  - Fixed order NNLO predictions available with significantly reduced theory uncertainties for W/Z
- γ+Jets: PDF constraints possible with measurements and improved NNLO predictions

### EWK Z+2jets

- First observation of the EW Zjj production at 13 TeV
  - 10% prec. of  $\sigma$  measurement; in agreement with SM prediction
- stringent limits on aTGC and constraints on gap activity modelling

# Backup



UNIVERSITY OF HELSINKI AND HELSINKI INSTITUTE OF PHYSICS

Gustaf Hällströmin katu 2 P.O.Box 64 00014 University of Helsinki FINLAND

T +358-2-941 50564 mikko.voutilainen@helsinki.fi mikko.voutilainen@cern.ch voutila.web.cern.ch



# Particle Flow (PF) approach



# Particle Flow (PF) approach



