

The milliQan Experiment: Search for milli-charged Particles at the LHC

Jae Hyeok Yoo (UC Santa Barbara) on behalf of milliQan Collaboration 07/07/2018
ICHEP2018 Seoul

milliQan experiment

- No evidence for new physics at the LHC
 - Any phase space we might not be exploring?
- milliQan experiment searches for millicharged particles (mCP) produced at the LHC
 - Existing detectors miss such particles due to small energy deposits and large background
- Limits from low energy and direct CMS/ ATLAS searches cover only low mass and high charge region
 - M_{mCP}>1 GeV and Q<0.3e region unexplored
- milliQan provides a unique opportunity to explore this region

milli-charged particles

- There are multiple ways to get milicharged particles
- A new U(1) in dark sector with massless dark-photon (A') and massive darkfermion (ψ)

$$\mathcal{L}_{ ext{dark sector}}$$

$$= -\frac{1}{4}A'_{\mu\nu}A'^{\mu\nu} + i\bar{\psi}\left(\partial + ie'A' + iM_{\text{mCP}}\right)\psi$$

milli-charged particles

$$\mathcal{L}_{ ext{dark sector}}$$

$$= -\frac{1}{4}A'_{\mu\nu}A'^{\mu\nu} + i\bar{\psi}\left(\partial + ie'A' + iM_{\text{mCP}}\right)\psi$$
$$-\frac{\kappa}{2}A'_{\mu\nu}B^{\mu\nu}$$

- There are multiple ways to get milicharged particles
- A new U(1) in dark sector with massless dark-photon (A') and massive darkfermion (ψ)
- A' and B kinetically mix

milli-charged particles

 $\mathcal{L}_{ ext{dark sector}}$

$$= -\frac{1}{4}A'_{\mu\nu}A'^{\mu\nu} + i\bar{\psi}\left(\partial + ie'A' + iM_{\text{mCP}}\right)\psi$$
$$-\frac{\kappa}{2}A'_{\mu\nu}B^{\mu\nu}$$
$$A'_{\mu} \to A'_{\mu} + \kappa B_{\mu}$$

- There are multiple ways to get milicharged particles
- A new U(1) in dark sector with massless dark-photon (A') and massive darkfermion (ψ)
- A' and B kinetically mix
- Charge of ψ is proportional to mixing (κ)

Detector concept

- With charge down to 10⁻³e, dE/dx is 10⁻⁶ of Q=1e particles
 - EM interaction proportional to Q²
 - need large, active, sensitive area to produce signals, even as small as single photon
- Composed of 3 layers of 80x5x5 cm scintillator arrays pointing back to CMS IP
 - particles from IP should go through all 3 layers: reduces random combinatoric backgrounds
- Light converted/amplified by photomultiplier tube (PMT)

- Ideal location for detector
 - shield cosmics: underground
 - shield beam particles: thick material
- Found a place that satisfies both

100m underground

100m underground Drainage gallery **CMS** cavern ~ 2.7 m A ____

• In order to verify the feasibility and optimize the design of the experiment thoroughly, ~1% of the detector is installed as a "demonstrator"

- In order to verify the feasibility and optimize the design of the experiment thoroughly, ~1% of the detector is installed as a "demonstrator"
- 3 layers of 2x3 scintillator+PMT

- In order to verify the feasibility and optimize the design of the experiment thoroughly, ~1% of the detector is installed as a "demonstrator"
- 3 layers of 2x3 scintillator+PMT
- Scintillator slabs and lead bricks
 - Tag thru-going particles, get time info, shield radiation

- In order to verify the feasibility and optimize the design of the experiment thoroughly, ~1% of the detector is installed as a "demonstrator"
- 3 layers of 2x3 scintillator+PMT
- Scintillator slabs and lead bricks
 - Tag thru-going particles, get time info, shield radiation
- Scintillator panels to cover top and sides
 - Tag/reject cosmic muons

- In order to verify the feasibility and optimize the design of the experiment thoroughly, ~1% of the detector is installed as a "demonstrator"
- 3 layers of 2x3 scintillator+PMT
- Scintillator slabs and lead bricks
 - Tag thru-going particles, get time info, shield radiation
- Scintillator panels to cover top and sides
 - Tag/reject cosmic muons
- Hodoscope packs
 - Get tracks of beam/cosmic muons

Demonstrator results: in situ charge calibration

- Important because it tells us how small charge the MQ can detect
- Calculate N_{PE} for cosmic muon (Q=1e)
 - N_{PE} = Pulse area (cosmic muon) / Pulse area (SPE)
- Extrapolate it to fractional charges by Q²

Demonstrator results: in situ charge calibration

- Important because it tells us how small charge the MQ can detect
- Calculate N_{PE} for cosmic muon (Q=1e)
 - N_{PE} = Pulse area (cosmic muon) / Pulse area (SPE)
- Extrapolate it to fractional charges by Q²
- Cosmic muons from vertical path
- SPE from afterpulses
 - SPE pulse area measurement also done on the bench as a validation

Demonstrator results: in situ charge calibration

- Pulse area as a function of HV for a PMT
- N_{PE} for Q=1e is 5k
- Flight distance of cosmic muons in scintillator is 5 cm
- For through-going muons, the flight distance is 80 cm
- N_{PE} for thru-going muon is $5k \times 80/5 = 80k$
- Since N_{PE} is proportional to Q²
 - $N_{PE} = 1$ for Q ~ 0.003e
- Consistent with full Geant4 simulation results

Demonstrator results: beam muons

- Understand the demonstrator using muons from collisions
 - alignment, triggering, timing calibration, etc

Demonstrator results: beam muon occupancy

Demonstrator results: beam muon occupancy

Demonstrator results: beam muon occupancy

Demonstrator results: luminosity structure within a fill

- Rate of thru-going particles as a function of time (hour)
- Rate decreases exponentially
 - consistent with trend of instantaneous luminosity (time constant: 13±2h vs 14h)

Demonstrator results: timing of thru-going particles

Mechanical design for full detector

Summary and Plan

A Letter of Intent to Install a Milli-charged Particle Detector at LHC P5 $\,$

Austin Ball,¹ Jim Brooke,² Claudio Campagnari,³ Albert De Roeck,¹ Brian Francis,⁴ Martin Gastal,¹ Frank Golf,³ Joel Goldstein,² Andy Haas,⁵ Christopher S. Hill,⁴ Eder Izaguirre,⁶ Benjamin Kaplan,⁵ Gabriel Magill,^{7,6} Bennett Marsh,³ David Miller,⁸ Theo Prins,¹ Harry Shakeshaft,¹ David Stuart,³ Max Swiatlowski,⁸ and Itay Yavin^{7,6}

- milliQan experiment has a unique sensitivity to unexplored m_{mCP} =1-100 GeV and Q<0.3e region
- Demonstrator installed last year; being used to validate design and measure backgrounds
 - Learning a lot about background and gaining experience in detector operation
 - Demonstrator data might provide first sensitivity to the uncovered region
- Full detector is planned to be installed during LS2
 - Look forward to building and running it to discover nature's secret particle!

Backup

FIG. 4 in LOI

Number of expected mCP particles per fb⁻¹ of integrated luminosity incident at the detector as a function of the mass of the milli-charged particle. To illustrate the dependence of the acceptance on the charge, the Q² production dependence has been factored out by normalizing the cross section for all charge scenarios to that for a milli-charged particle with Q = 0.1 e.

Geant4 simulation

FIG. 5: Depiction of the (a) full detector and (b) a single scintillating block with coupled phototube, as implemented in the Geant4 detector simulation. The mCP is yellow and radiated photons are green.

Detection efficiency

FIG. 6: Efficiencies for (a) a single scintillator block and coupled PMT and (b) the whole detector with 15ns triple-incidence, as determined from the Geant4 detector simulation.

Jae Hyeok Yoo (UCSB)

ICHEP2018 Seoul (07/07/2018)

Installation of demonstrator

Installation team in front of the demonstrator

TCHEP2016 Seoul (07/07/2018)

Alignment of demonstrator

- The detector had to be aligned with CMS IP
 - ➤ Projection of CMS network into gallery done during TS1
 - > Alignment of detector carried out by Noemie Beni and Benoit Cumer

Charge calibration: bench setup

Can control $\langle N_{PE} \rangle$ by varying amplitude of input LED pulse

Trigger scope on the LED pulse, so PMT response falls in well-defined time window

No need for any peak-finding, and allows us to trigger on "blank" (0-PE) events

LED:

Thorlabs LED430L 430 nm (blue/violet)

PMTs: Hamamatsu R878 Hamamatsu R7725

Charge calibration: bench results

1PE peak at 80 pVs

milliQan collaboration

Chris Hill (OSU)

Andy Haas (NYU)

milliQan collaboration

Ryan Heller Max Swiatlowski David Stuart (UCSB) (UCSB/Fermilab) (U of Chicago)

Brian Francis (OSU)

Matthew Citron (UCSB)

Jae Hyeok Yoo (UCSB)

Note in photo: Ralf Ulrich (KIT), Austin Ball, Albert De Roeck, Martin Gastal, Rob Loos (CERN), Maytham Ezzeldine, Haitham Zaraket (Univerisite Libanaise), Itay Yavin, Gabriel Magill (Perimeter/McMaster), Edar Izaguirre (BNL), Jim Brooke, Joel Goldstein, Olivier Davignon (Bristol)