(National Taiwan University

Discovery potential of light sterile neutrinos with displaced vertices

Giovanna Cottin

ICHEP 2018, Seoul, Korea

A displaced vertex signature can occur when a long-lived particle* decays inside a particle detector's acceptance

(lifetime ~ picoseconds-nanoseconds)

Source: G. Cottin

*long-lived particle = "BSM particle that dies (gives up all its energy or decays to SM) somewhere in the detector acceptance". J.Beachman @ LHC-LLP workshop, CERN Using Displaced Vertices @ LHC to shed light on New Physics

Two studies in this talk motivated by Neutrinos:

- 1. Reinterpreting current displaced searches in the context of a left-right symmetric model with a long-lived sterile neutrino. **Proposing a displaced strategy with optimized cuts** Phys. Rev. D 97, 055025 (2018) [arXiv:1801.02734] G. Cottin, J.C. Helo, M. Hirsch
- 2. Same displaced strategy used in **constraining sterile neutrino mixing**. Strategy shows no competition with other searches and proposed experiments [arXiv:1806.05191] G. Cottin, J.C. Helo, M. Hirsch

Source: nobelprize.org

Displaced Vertex Searches @ LHC Looking for a light, long-lived sterile neutrino from Left-Right symmetric model Phys. Rev. D 97, 055025 (2018) [arXiv:1801.02734] G. Cottin, J.C. Helo, M. Hirsch

LR model:

$SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

Other displaced LR strategies in: M. Nemevsek, F. Nesti, and G. Popara, <u>arXiv:1801.05813</u> J. C. Helo, M. Hirsch, and S. Kovalenko, <u>Phys. Rev. D89 (2014)</u> J. C. Pati and A. Salam, <u>Phys. Rev. D10, 275 (1974)</u> R. N. Mohapatra and J. C. Pati, <u>Phys. Rev. D11, 2558 (1975)</u> R. N. Mohapatra and G. Senjanovic, <u>Phys. Rev. D23, 165 (1981)</u>

$$c\tau_N \sim 0.12 \left(\frac{10 \text{ GeV}}{m_N}\right)^5 \left(\frac{m_{W_R}}{1000 \text{ GeV}}\right)^4 \text{ [mm]}$$

Production and decay of the sterile neutrino depends on the unknown mass of the new, heavy right-handed gauge boson

ATLAS Multitrack DV 13 TeV inspired search [arXiv:1710.04901]

Source: ATLAS Event Display arXiv:1109.2242

Analysis provides efficiency maps depending on DV mass, tracks and decay distance (within 4 and 300 mm). We use them to model detector response to DVs

Sensitivity with "prompt lepton + loose DV multitrack"

6

Left-Right Standard Model + N

Displaced Vertex Searches @ LHC Still looking for a light, long-lived sterile neutrino in Standard Model + N [arXiv:1806.05191] G. Cottin, J.C. Helo, M. Hirsch

Seesaw:

P. Minkowski, <u>Phys. Lett. 67B (1977)</u> R. N. Mohapatra and G. Senjanovic, <u>Phys. Rev. Lett. 44 (1980)</u> J. Schechter and J. W. F. Valle, <u>Phys. Rev. D22, 2227 (1980)</u>

$$c\tau_N \sim 3.7 \left(\frac{1 \text{ GeV}}{m_N}\right)^5 \left(\frac{0.1}{|V_{lN}|^2}\right) \text{ [mm]}$$

Sterile N mixes with SM neutrino. Large lifetime due to off-shell decay

Other displaced N strategies in: E. Izaguirre and B. Shuve, <u>Phys. Rev. D91 (2015)</u> (lepton-jets 1) S. Dube, D. Gadkari, and A. M. Thalapillil, <u>Phys. Rev. D96 (2017)</u> (lepton-jets 2) J. C. Helo, M. Hirsch, and S. Kovalenko, <u>Phys. Rev. D89 (2014)</u>

For constraints on mixing, see: G. Cvetic, A. Das, J. Zamora-Saa, <u>arXiv:1805.00070</u> A.Das, N. Okada, <u>arXiv:1702.04668</u>

$$pp \rightarrow W^{\pm} \rightarrow Nl^{\pm}$$

 $N \rightarrow l^{\pm}q\bar{q}$
 $N \rightarrow l'^{\mp}l^{\pm}\nu_{l}$

Complementarity with future experiments

Can also access tau mixing with a multitrack DV strategy !

 $pp \rightarrow W^{\pm} \rightarrow Nl^{\pm}$ $N \rightarrow \nu_l q \bar{q}$

We avoid a problematic tau coming from the DV. Complementarity with future experiments

Displaced vertex signatures are well motivated. Can be present in most BSM frameworks. Interesting phenomenology at the LHC.

We can have a clear collider test of models for neutrino mass generation