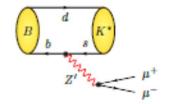
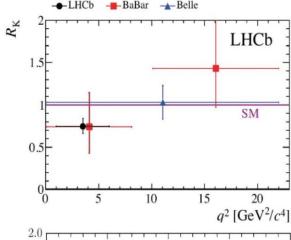
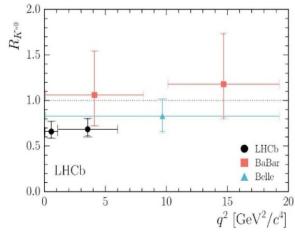


Bottom-quark Fusion Processes at the LHC for Probing Z' Models and B-meson Decay Anomalies


Mykhailo Dalchenko

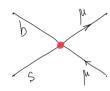

Physics model and context



- Recent LHCb results shows certain deviation from SM prediction for R_K/R_{K^*}
- Combining this results with other anomalies observed in $b \to s \mu \mu$ transition we can obtain up to 4σ tension with SM
- See Lorenzo Capriotti talk

New contributions to $b\to s\mu\mu$ transition can be explained in various BSM theories, in particular involving Z'

Physics model and context


New Physics contribution to B decays can be described by following Lagrangian:

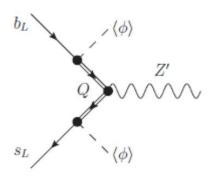
$$\mathcal{L} \supset \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} C_9 O_9 + h.c.$$

where effective operator O_9 ,

$$O_9 = (\bar{s}\gamma_\mu P_L b) (\bar{\mu}\gamma_\mu \mu)$$

stands for 4-fermion interaction:

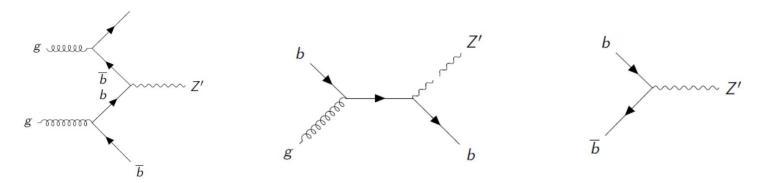
and best fit value for corresponding Wilson coefficient is: $C_9 = -1.56^{+0.46}_{-0.56}$


Physics model and context

Minimal Lagrangian:

$$\mathcal{L} \supset Z'_{\mu} \left[g_{\mu} \bar{\mu} \gamma^{\mu} \mu + g_{\mu} \bar{\nu_{\mu}} \gamma^{\mu} P_{L} \nu_{\mu} + g_{b} \sum_{q=t,b} \bar{q} \gamma^{\mu} P_{L} q + (g_{b} \delta_{bs}^{L} \bar{s} \gamma^{\mu} P_{L} b + \text{h.c.}) \right]$$

Many models can produce such lagrangian, e.g. using VLQ:



- Selective *U(1)* fermion charges to evade current LHC and LEP boundaries
- Only needs to couple to muons in leptonic sector and b-s in fermionic sector
- Add muon neutrino and top quark couplings to preserve SU(2)
- Can also consider ditau decays


Production at the LHC

BFF: Bottom Fermion Fusion
$$\sigma(\,pp\to Z'\,\to\mu\,\mu\,) \sim \frac{2\,g_b^2\,g_\mu^{V^2}}{6\,g_b^2\,+3g_\mu^{V^2}}$$

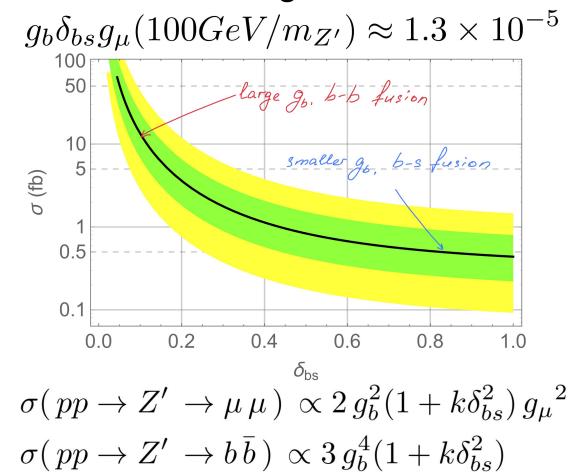
$$\sigma(\,pp\to Z'\,\to b\,\bar{b}\,) \sim \frac{3\,g_b^4}{6\,g_b^2\,+3g_\mu^{V^2}}$$

Similarly, one can have Bottom-Strange fusion to probe:

Final states at the LHC

ĀM

Add up Z' decays and ISR particles


- Z' decays:
 - di-quarks: pairs of b and, if kinematically allowed, t quarks
 - o di-leptons
 - In principle, only muons and muon neutrinos will be enough
 - di-tau can be considered too

• ISR particles:

# ISR jets	process	description
0	b-b fusion	both <i>b</i> from sea quarks
0	b-s fusion	<i>b</i> and <i>s</i> from sea quarks
1	b-b fusion	one <i>b</i> from gluon splitting and one <i>b</i> from sea quarks
1	b-s fusion	one <i>b</i> from gluon splitting and one <i>s</i> from sea quarks
2	b-b fusion	both b from gluon

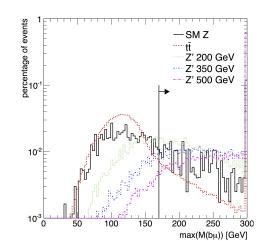
Production XS matching B-anomalies

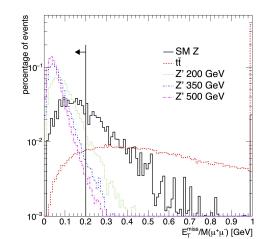


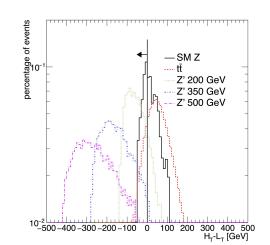
Search strategy

AM

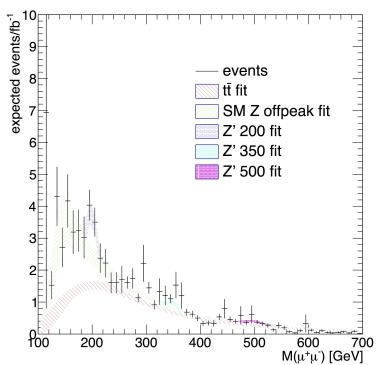
- Focus on di-muon final state
- Use ISR jets to reduce the background contamination
- Main backgrounds:
 - SM Z + jets
 - Top pair production



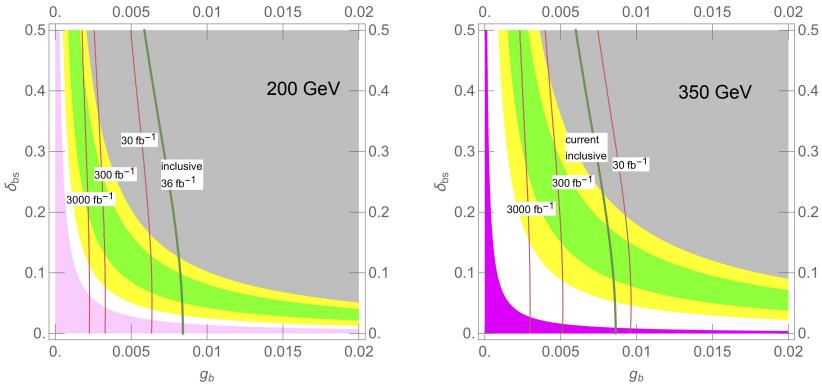

- Ask for two opposite sign muons
- At least two jets with at least one b-tagged
 - Helps to remove DY
- Apply top mass bound and MET cuts
 - Reduce top pair contribution
- Select events with high leptonic activity (HT-LT<0)


Search strategy

	preselection	$M_{\mu b}$	$H_{ m T}-L_{ m T}$	$E_{\rm T}^{\rm miss}/M(\mu^+\mu^-)$
$oxed{tar{t}}$	8%	17%	26%	27%
SM Z	0.2%	41%	32%	54%
Z' 200	7%	60%	74%	89%
Z' 350	10%	90%	90%	97%
Z' 500	13%	92%	94%	98%



Limits estimation



- Provide shapes for each signal and background process
- ▼ Take into account shape uncertainties
- Use Profile Likelihood estimator
- Delphes-only simulation
- Systematic uncertainties aren't accounted for
- Pile-up contribution is not accounted for

Projected sensitivity

We expect much improved sensitivity w.r.t. Inclusive searches around 200 GeV dilepton invariant mass