

ICHEP 2018 Seoul (Korea), July 6, 2018

Heavy resonances and

the electroweak effective theory

Ignasi Rosell Universidad CEU Cardenal Herrera València (Spain)

In collaboration with:

C. Krause (Fermilab, Chicago, USA) A. Pich (IFIC, UV-CSIC, València, Spain) J. Santos (IFIC, UV-CSIC, València, Spain) J.J. Sanz-Cillero (UCM, Madrid, Spain)

> Work in progress JHEP 04 (**2017**) 012 [arXiv: 1609.06659] PRD 93 (**2016**) no.5, 055041 [arXiv: 1510.03114]

OUTLINE

- 1) Motivation
- 2) Building the Lagrangian
 - 1) Low energies: the Electroweak Effective Theory (EWET)
 - 2) High energies: Resonance Lagrangian
- 3) Estimation of the LECs: tracks of resonances in the EWET
- 4) Phenomenology in the purely bosonic sector
- 5) Conclusions

1. Motivation

- The Standard Model (SM) provides an extremely succesful description of the electroweak and strong interactions.
- A key feature is the particular mechanism adopted to break the electroweak gauge symmetry to the electroweak subgroup, SU(2)_L x U(1)_Y → U(1)_{QED}, so that the W and Z bosons become massive. The LHC discovered a new particle around 125 GeV*.
- Up to now all searches for New Physics have been negative so far. Therefore we can use EFTs because we have a mass gap.

1. Motivation

- The Standard Model (SM) provides an extremely succesful description of the electroweak and strong interactions.
- A key feature is the particular mechanism adopted to break the electroweak gauge symmetry to the electroweak subgroup, SU(2)_L x U(1)_Y → U(1)_{QED}, so that the W and Z bosons become massive. The LHC discovered a new particle around 125 GeV*.

• Up to now all searches for New Physics have been negative so far. Therefore we can use EFTs because we have a mass gap.

Diagram by C. Krause [PhD thesis, 2016]

* CMS and ATLAS Collaborations.

- Depending on the nature of the EWSB we have two possibilities for these EFTs* (or something in between):
 - Decoupling (linear) EFT: SMEFT
 - SM-Higgs (forming a doublet with the EW Goldstones)
 - Weakly coupled
 - LO: SM
 - Expansion in canonical dimensions
 - Non-decoupling (non-linear) EFT: EWET, HEFT, EWChL
 - Non-SM Higgs (being a scalar singlet)
 - Strongly coupled
 - LO: Higgsless SM + scalar h + 3 GB (chiral Lagrangian)
 - Expansion in loops or chiral dimensions

* LHCHXSWG Yellow Report '16

- Depending on the nature of the EWSB we have two possibilities for these EFTs* (or something in between):
 - Decoupling (linear) EFT: SMEFT
 - SM-Higgs (forming a doublet with the EW Goldstones)
 - Weakly coupled
 - LO: SM
 - Expansion in canonical dimensions
 - Non-decoupling (non-linear) EFT: EWET, HEFT, EWChL
 - Non-SM Higgs (being a scalar singlet)
 - Strongly coupled
 - LO: Higgsless SM + scalar h + 3 GB (chiral Lagrangian)
 - Expansion in loops or chiral dimensions

* LHCHXSWG Yellow Report '16

- Depending on the nature of the EWSB we have two possibilities for these EFTs* (or something in between):
 - Decoupling (linear) EFT: SMEFT
 [see Eberhardt's talk]
 - SM-Higgs (forming a doublet with the EW Goldstones)
 - Weakly coupled
 - LO: SM
 - Expansion in canonical dimensions
 - Non-decoupling (non-linear) EFT: EWET, HEFT, EWChL
 - Non-SM Higgs (being a scalar singlet)
 - Strongly coupled
 - LO: Higgsless SM + scalar h + 3 GB (chiral Lagrangian)
 - Expansion in loops or chiral dimensions

[see Rosenlyst's and Cacciapaglia's talks, in the spirit of Composite Higgs models, where the electroweak scale is dynamically generated]

* LHCHXSWG Yellow Report '16

What do we want to do?

What do we want to do?

Similarities to Chiral Symmetry Breaking in QCD

i) Custodial symmetry: The Lagrangian is approximately invariant under global SU(2)_L x SU(2)_R transformations. Electroweak Symmetry Breaking (EWSB) turns to be SU(2)_LxSU(2)_R \rightarrow SU(2)_{L+R}.

ii) Similar to the Chiral Symmetry Breaking (ChSB) occurring in QCD, *i.e.*, similar to the "pion" Lagrangian of Chiral Perturbation Theory (ChPT)*^, by replacing f_{π} by v=1/ $\sqrt{(2G_{F})}$ =246 GeV. Rescaling naïvely we expect resonances at the TeV scale.

* Weinberg '79

*	Gasser	and	Leutwyler	'84	'85	
---	--------	-----	-----------	-----	-----	--

* Bijnens et al. '99 '00

**Ecker et al. '89 ** Cirigliano et al. '06 [^]Dobado, Espriu and Herrero '91 [^]Espriu and Herrero '92 [^]Herrero and Ruiz-Morales '94

What do we want to do?

Similarities to Chiral Symmetry Breaking in QCD

$QCD(q_a, G_{\mu\nu})$	Fundamental EW Theory (??)
\$	\$
Resonance Chiral Theory	Resonance EW Theory
$(\sigma, \rho,)$	(M_V, M_A, \ldots)
1 1	\$
Chiral Perturbation Theory	EW Effective Theory
(f_{π}, π_i)	(\mathbf{v}, ϕ_i)

Diagram by J. Santos [VIII CPAN days, 2016]

- ✓ Oblique electroweak observables** (S and T)
- ✓ Dispersive relations for both S** and T*
- ✓ Short-distance constraints: two-Goldstone VFF, Higgs-Goldstone VFF, Weinberg Sum Rules

- ✓ Oblique electroweak observables** (S and T)
- ✓ Dispersive relations for both S** and T*
- ✓ Short-distance constraints: two-Goldstone VFF, Higgs-Goldstone VFF, Weinberg Sum Rules

* Pich, IR and Sanz-Cillero '12 '13 '14 ** Peskin and Takeuchi '92

- ✓ Oblique electroweak observables** (S and T)
- ✓ Dispersive relations for both S** and T*
- ✓ Short-distance constraints: two-Goldstone VFF, Higgs-Goldstone VFF, Weinberg Sum Rules

* Pich, IR and Sanz-Cillero '12 '13 '14 ** Peskin and Takeuchi '92

- Oblique electroweak observables** (S and T)
- ✓ Dispersive relations for both S** and T*
- ✓ Short-distance constraints: two-Goldstone VFF, Higgs-Goldstone VFF, Weinberg Sum Rules

** Peskin and Takeuchi '92

- Oblique electroweak observables** (S and T)
- ✓ Dispersive relations for both S** and T*
- ✓ Short-distance constraints: two-Goldstone VFF, Higgs-Goldstone VFF, Weinberg Sum Rules

* Pich, IR and Sanz-Cillero '12 '13 '14

** Peskin and Takeuchi '92

2. Building the Lagrangian

✓ Two strongly coupled Lagrangians for two energy regions:

- ✓ Electroweak Effective Theory (EWET) at low energies (without resonances).
- Resonance Lagrangians at high energies* (with resonances).
- \checkmark The aim of this work:

Estimation of the Low-Energy Couplings (LECs) in terms of resonance parameters

- ✓ Steps:
 - 1. Building the EWET and resonance Lagrangian
 - 2. Matching the two effective theories
- ✓ High-energy constraints
 - 1. From QCD we know the importance of sum-rules and form factos at large energies.
 - 2. Operators with a large number of derivatives tend to violate the asymptotic behaviour.
 - 3. The constraints are required to reduce the number of unknown resonance parameters.
 - 4. The underlying theory is less known than in the case of QCD (bottom-up approach).
- ✓ This program works pretty well in QCD: estimation of the LECs (Chiral Perturbation Theory) by using Resonance Chiral Theory** and importance of short-distance constraints***.

^{*} Pich, IR, Santos and Sanz-Cillero '16 '17

^{*} Krause, Pich, IR, Santos and Sanz-Cillero [in progress]

^{**} Cirigliano et al. '06

^{***} Ecker et al. '89

How do we build the Lagrangian?

- Custodial symmetry
- ✓ Degrees of freedom:
 - ✓ At low energies: bosons χ (EW goldstones, gauge bosons, h), fermions ψ
 - ✓ At high energies: previous dof + resonances (V,A,S,P and fermionic)
- Chiral power counting*

* Weinberg '79
* Hirn and Stern '05
* Delgado et al. '14
* Alonso et al. '12
* Pich, IR, Santos and Sanz-Cillero '16 '17
* Buchalla, Catá and Krause '13
* Krause, Pich, IR, Santos and Sanz-Cillero [in progress]
* Brivio et al. '13

Heavy resonances and the electroweak effective theory, I. Rosell

How do we build the Lagrangian?

- Custodial symmetry
- ✓ Degrees of freedom:
 - ✓ At low energies: bosons χ (EW goldstones, gauge bosons, h), fermions ψ
 - At high energies: previous dof + resonances (V,A,S,P and fermionic)
- Chiral power counting*

 $\sim \mathcal{O}\left(p^{0}
ight) = rac{\psi}{\pi} \sim \mathcal{O}\left(p
ight) = \partial_{\mu}, \, m \, \sim \, \mathcal{O}(p) = \mathcal{T} \, \sim \, \mathcal{O}(p) = g, \, g' \, \sim \, \mathcal{O}(p)$ Finite pieces from loops (amplitude dependent) $\mathcal{M}(2 \to 2) \approx \frac{p^2}{v^2} \left[1 + \left(\frac{c_k^r p^2}{v^2} - \frac{\Gamma_k p^2}{16\pi^2 v^2} \ln \frac{p}{\mu} + \dots \right) + \mathcal{O}(p^4) \right]$ LO (tree) NLO (tree) NLO (1-loop) Typical <u>loop</u> suppression suppression ~ /($16\pi^2 v^2$) ~1/M² + ... (non-linearity) (heavier states) Diagram by J.J. Sanz-Cillero [HEP 2017] * Weinberg '79 * Hirn and Stern '05 * Delgado et al. '14 * Appelquist and Bernand '80 * Alonso et al. '12 * Pich, IR, Santos and Sanz-Cillero '16 '17 * Buchalla, Catá and Krause '13 * Krause, Pich, IR, Santos and Sanz-Cillero [in progress] * Longhitano '80, '81 * Brivio et al. '13 * Manohar, and Georgi '84 * Gasser and Leutwyler '84 '85 8/11 Heavy resonances and the electroweak effective theory, I. Rosell

2.1. Low energies: the Electroweak Effective Theory (no resonances)*

$$\begin{aligned} \mathcal{L}_{\text{EWET}}^{(2)} &= \sum_{\xi} \left(i \, \bar{\xi} \gamma^{\mu} d_{\mu} \xi - v \left(\, \bar{\xi}_{L} \, \mathcal{Y} \, \xi_{R} \, + \, \text{h.c.} \right) \right) \\ &- \frac{1}{2g^{2}} \langle \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \rangle_{2} - \frac{1}{2g'^{2}} \langle \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \rangle_{2} - \frac{1}{2g_{s}^{2}} \langle \hat{G}_{\mu\nu} \hat{G}^{\mu\nu} \rangle_{3} \\ &+ \frac{1}{2} \partial_{\mu} h \, \partial^{\mu} h \, - \, \frac{1}{2} \, m_{h}^{2} \, h^{2} \, - \, V(h/v) \, + \, \frac{v^{2}}{4} \, \mathcal{F}_{u}(h/v) \, \langle u_{\mu} u^{\mu} \rangle_{2} \end{aligned}$$

* Longhitano '80 '81

* Alonso et al. '13

 * Guo, Ruiz-Femenia and Sanz-Cillero '15

* Buchalla and Catà '12 '14 * Pich, IR, Santos and Sanz-Cillero '16 '17

* Krause, Pich, IR, Santos and Sanz-Cillero [in progress]

2.1. Low energies: the Electroweak Effective Theory (no resonances)*

$$\mathcal{L}_{\text{EWET}}^{(4)} = \sum_{i=1}^{12} \mathcal{F}_i \mathcal{O}_i + \sum_{i=1}^{3} \widetilde{\mathcal{F}}_i \widetilde{\mathcal{O}}_i + \sum_{i=1}^{8} \mathcal{F}_i^{\psi^2} \mathcal{O}_i^{\psi^2} \\ + \sum_{i=1}^{3} \widetilde{\mathcal{F}}_i^{\psi^2} \widetilde{\mathcal{O}}_i^{\psi^2} + \sum_{i=1}^{10} \mathcal{F}_i^{\psi^4} \mathcal{O}_i^{\psi^4} + \sum_{i=1}^{2} \widetilde{\mathcal{F}}_i^{\psi^4} \widetilde{\mathcal{O}}_i^{\psi^4}$$

Bosonic sector

i	\mathcal{O}_i	$\widetilde{\mathcal{O}}_i$
1	$\frac{1}{4} \langle f_+^{\mu\nu} f_{+\mu\nu} - f^{\mu\nu} f_{-\mu\nu} \rangle_2$	$\frac{i}{2} \langle f^{\mu\nu}[u_\mu,u_\nu] \rangle_2$
2	$\frac{1}{2}\langlef_+^{\mu\nu}f_{+\mu\nu}+f^{\mu\nu}f_{-\mu\nu}\rangle_2$	$\langle f^{\mu\nu}_+ f_{-\mu\nu} \rangle_2$
3	$\frac{i}{2} \langle f_+^{\mu\nu}[u_\mu, u_\nu] \rangle_2$	$\frac{(\partial_{\mu}h)}{v} \langle f_{+}^{\mu\nu} u_{\nu} \rangle_{2}$
4	$\langle u_{\mu}u_{\nu}\rangle_2 \langle u^{\mu}u^{\nu}\rangle_2$	
5	$\langle u_{\mu}u^{\mu}\rangle_2^2$	
6	$\frac{(\partial_{\mu}h)(\partial^{\mu}h)}{v^2} \langle u_{\nu}u^{\nu} \rangle_2$	
7	$\frac{(\partial_{\mu}h)(\partial_{\nu}h)}{v^2} \langle u^{\mu}u^{\nu} \rangle_2$	
8	$\frac{(\partial_{\mu}h)(\partial^{\mu}h)(\partial_{\nu}h)(\partial^{\nu}h)}{v^4}$	
9	$\frac{(\partial_{\mu}h)}{v} \langle f_{-}^{\mu\nu} u_{\nu} \rangle_{2}$	
10	$\langle \mathcal{T} u_{\mu} \rangle_2^2$	
11	$\hat{X}_{\mu\nu}\hat{X}^{\mu\nu}$	
12	$\langle \hat{G}_{\mu\nu} \hat{G}^{\mu\nu} \rangle_3$	

* Longhitano '80 '81

* Guo, Ruiz-Femenia and Sanz-Cillero '15

* Buchalla and Catà '12 '14 * Pich, IR, Santos and Sanz-Cillero '16 '17 * Krause, Pich, IR, Santos and Sanz-Cillero [in progress]

* Alonso et al. '13

2.1. Low energies: the Electroweak Effective Theory (no resonances)*

$$\mathcal{L}_{\text{EWET}}^{(4)} = \sum_{i=1}^{12} \mathcal{F}_i \,\mathcal{O}_i + \sum_{i=1}^3 \widetilde{\mathcal{F}}_i \,\widetilde{\mathcal{O}}_i + \sum_{i=1}^8 \mathcal{F}_i^{\psi^2} \,\mathcal{O}_i^{\psi^2} \\ + \sum_{i=1}^3 \widetilde{\mathcal{F}}_i^{\psi^2} \,\widetilde{\mathcal{O}}_i^{\psi^2} + \sum_{i=1}^{10} \mathcal{F}_i^{\psi^4} \,\mathcal{O}_i^{\psi^4} + \sum_{i=1}^2 \widetilde{\mathcal{F}}_i^{\psi^4} \,\widetilde{\mathcal{O}}_i^{\psi^4}$$

2.2. High energies: Resonance Lagrangian (with resonances)**

$$\mathcal{L}_{\mathrm{RT}} = \mathcal{L}_{\mathrm{R}}[R, \chi, \psi] + \mathcal{L}_{\mathrm{non-R}}[\chi, \psi]$$

Bosonic resonances:

• V, A, S and P

- SU(2) singlets and triplets
- SU(3) singlets and octets
- Spin-1 resonances with Proca or antisymmetric formalism
- Fermionic doublet resonances:
 - Including operators with one heavy fermionic resonance
- ** Pich, IR, Santos and Sanz-Cillero '16 '17
- ** Krause, Pich, IR, Santos and Sanz-Cillero [in progress]

Heavy resonances and the electroweak effective theory, I. Rosell

Field (R ^{QCD} EW)	R ¹ 1	R ¹ 3	R ⁸ 1	F ⁸ 3
S	3	1	0	1
Р	1		10	1
V with Proc	2	120	2	2
A with Proc	3	2	2	2
V wit'. a יי.	2	5	2	1
A with ant.	2	5	2	1
rermionic	6			

3. Estimation of the LECs: tracks of resonances in EWET

- Integration of the heavy modes
- ✓ Similar to the ChPT case*

$$e^{i S_{\text{eff}}[\chi,\psi]} = \int [\mathrm{d}R] e^{i S[\chi,\psi,R]}$$

- ✓ The result: LECs in terms of resonance couplings**
- ✓ LHC dibosons analysis useful for four-fermion operators (HVT models) [see Grevtsov's talk]
- ✓ As an example we show a simplified case of bosonic operators:

- * Ecker et al. '89
- ** Pich, IR, Santos and Sanz-Cillero '16 '17
- ** Krause, Pich, IR, Santos and Sanz-Cillero [in progress]

Estimation of the LECs: tracks of resonances in EWET

- Integration of the heavy modes \checkmark
- Similar to the ChPT case* \checkmark

$$e^{i \boldsymbol{S}_{\mathrm{eff}}[\boldsymbol{\chi}, \boldsymbol{\psi}]} ~~=~~ \int \left[\mathrm{d}\boldsymbol{R}\right] e^{i \boldsymbol{S}[\boldsymbol{\chi}, \boldsymbol{\psi}, \boldsymbol{R}]}$$

- The result: LECs in terms of resonance couplings** \checkmark
- LHC dibosons analysis useful for four-fermion operators (HVT models) [see Grevtsov's talk] \checkmark
- As an example we show a simplified case of bosonic operators: \checkmark

P-even operators, color singlets, neither explicit breaking of custodial symmetry nor $U(1)_{\times}$ field strength tensor.

Importance of short-distance constraints (two-Goldstone and Higgs-Goldstone vector form factors and Weinberg Sum Rules).

- * Ecker et al. '89
- ** Pich, IR, Santos and Sanz-Cillero '16 '17
- ** Krause, Pich, IR, Santos and Sanz-Cillero [in progress]

3. Estimation of the LECs: tracks of resonances in EWET

- Integration of the heavy modes \checkmark
- Similar to the ChPT case \checkmark

$$e^{i \boldsymbol{S}_{\mathrm{eff}}[\boldsymbol{\chi}, \boldsymbol{\psi}]} ~~=~~ \int \left[\mathrm{d}\boldsymbol{R}\right] e^{i \boldsymbol{S}[\boldsymbol{\chi}, \boldsymbol{\psi}, \boldsymbol{R}]}$$

- The result: LECs in terms of resonance couplings \checkmark
- LHC dibosons analysis useful for four-fermion operators (HVT models) [see Grevtsov's talk] \checkmark
- As an example we show a simplified case of bosonic operators: \checkmark

3. Estimation of the LECs: tracks of resonances in EWET

- Integration of the heavy modes
- ✓ Similar to the ChPT case

$$e^{i \boldsymbol{S}_{\mathrm{eff}}[\boldsymbol{\chi}, \boldsymbol{\psi}]} ~=~ \int \left[\mathrm{d}\boldsymbol{R}\right] e^{i \boldsymbol{S}[\boldsymbol{\chi}, \boldsymbol{\psi}, \boldsymbol{R}]}$$

- ✓ The result: LECs in terms of resonance couplings
- ✓ LHC dibosons analysis useful for four-fermion operators (HVT models) [see Grevtsov's talk]
- ✓ As an example we show a simplified case of bosonic operators:

5. Conclusions

- The SM provides a successful description of the electroweak and strong interactions.
- The LHC discovered a new particle around 125 GeV.
- Bottom-up EFTs are appropriate, since there is a mass gap between SM and New Physics. Depending on the nature of the EWSB we have two possibilities:
 - Decoupling (linear) EFT: SMEFT ✓ SM-Higgs and weakly coupled \checkmark

 - Expansion in canonical dimensions
 - ✓ Non-decoupling (non-linear) EFT: EWET
 - Non-SM Higgs and strongly coupled
 - Expansion in loops or chiral dimensions

5. Conclusions

- The SM provides a successful description of the electroweak and strong interactions.
- The LHC discovered a new particle around 125 GeV.
- Bottom-up EFTs are appropriate, since there is a mass gap between SM and New Physics. Depending on the nature of the EWSB we have two possibilities:
 - Decoupling (linear) EFT: SMEFT ✓ SM-Higgs and weakly coupled \checkmark

 - Expansion in canonical dimensions
 - ✓ Non-decoupling (non-linear) EFT: EWET
 - Non-SM Higgs and strongly coupled
 - Expansion in loops or chiral dimensions

5. Conclusions

- The SM provides a successful description of the electroweak and strong interactions.
- The LHC discovered a new particle around 125 GeV.
- Bottom-up EFTs are appropriate, since there is a mass gap between SM and New Physics. Depending on the nature of the EWSB we have two possibilities:
 - Decoupling (linear) EFT: SMEFT
 SM-Higgs and weakly coupled

 - Expansion in canonical dimensions
 - ✓ Non-decoupling (non-linear) EFT: EWET
 - Non-SM Higgs and strongly coupled
 - Expansion in loops or chiral dimensions
- Similarities to ChSB of QCD -> ChPT and RChT
 - ✓ Room for these strongly-coupled scenarios and $M_R \approx \text{TeV}^*$.
 - ✓ Colored fields and fermionic doublet resonances[^].
 - Renormalizable order by order à la ChPT.
 - Proca and antisymmetric formalisms for the spin-1 resonances are equivalent*^.

Estimation of the LECs by using Resonance Lagrangians and short-distance constraints*

- * Pich, IR, Santos and Sanz-Cillero '16 '17
- ^ Krause, Pich, IR, Santos and Sanz-Cillero [in progress]

What do we add now* to our previous projects**?

- 1. Colored fields to the EWET
- 2. Colored bosonic resonances
- 3. Fermionic doublet resonances
- 4. Comparison with other EWET basis***

^{*} Krause, Pich, IR, Santos and Sanz-Cillero [in progress]

^{**} Pich et al. '16 '17

^{***} Buchalla et al. '14

Proca vs. antisymmetric formalism*

- ✓ By using path integral and changes of variables both formalisms are proven to be equivalent:
 - ✓ A set of relations between resonance parameters emerges.
 - ✓ The couplings of the non-resonant operators are different:

 $\mathcal{L}_{\mathrm{non-R}}^{(P)} \neq \mathcal{L}_{\mathrm{non-R}}^{(A)}$

- * Ecker et al. '89
- * Bijnens and Pallante '96
- * Kampf, Novotny and Trnka '07
- * Pich, IR, Santos and Sanz-Cillero '16 '17
- * Krause, Pich, IR, Santos and Sanz-Cillero [in progress]

Proca vs. antisymmetric formalism*

- ✓ By using path integral and changes of variables both formalisms are proven to be equivalent:
 - A set of relations between resonance parameters emerges.
 - ✓ The couplings of the non-resonant operators are different: $\mathcal{L}_{non-R}^{(P)} \neq \mathcal{L}_{non-R}^{(A)}$
- High-energy behaviour is fundamental:

$$\mathbb{F}_{\varphi\varphi}^{\mathcal{V}}(s) = \begin{cases} 1 + \frac{F_V G_V}{v^2} \frac{s}{M_V^2 - s} + \frac{\tilde{F}_A \tilde{G}_A}{v^2} \frac{s}{M_A^2 - s} - 2\mathcal{F}_3^{\text{SDA}} \frac{s}{v^2} & \text{(A)} \\ \frac{f_{\hat{V}} g_{\hat{V}}}{v^2} \frac{s^2}{s^2} + \frac{\tilde{f}_A \tilde{g}_A}{\tilde{g}_A} \frac{s^2}{s^2} - 2\mathcal{F}_3^{\text{SDP}} \frac{s}{v^2} & \text{(A)} \end{cases}$$

$$\left(1 + \frac{J_V g_V}{v^2} \frac{s}{M_V^2 - s} + \frac{J_A g_A}{v^2} \frac{s}{M_A^2 - s} - 2\mathcal{F}_3^{\text{SDP}} \frac{s}{v^2}\right)$$
(P)

 $\mathcal{F}_{3}^{\text{SDP}} = -\frac{f_{\hat{V}}g_{\hat{V}}}{2} - \frac{\widetilde{f}_{\hat{A}}\widetilde{g}_{\hat{A}}}{2}$

 $\mathcal{F}_3^{\text{SDA}} = 0$

* Ecker et al. '89

* Bijnens and Pallante '96

* Kampf, Novotny and Trnka '07

* Pich, IR, Santos and Sanz-Cillero '16 '17

* Krause, Pich, IR, Santos and Sanz-Cillero [in progress]

Heavy resonances and the electroweak effective theory, I. Rosell