The Potential of the ILC for Discovering New Particles

Mikael Berggren¹ on behalf of the LCC Physics Working group (based on arXiv:1702.05333)

¹DESY, Hamburg

ICHEP, Seoul, July, 2018

- Several talks in this conference have already shown that ILC has a great potential for *indirect* discovery of BSM (Jeans (411), Ogawa (755), Bilokin (420), and Reuter (912) in Higgs and EW sessions).
- But: Can ILC still *directly* discover BSM, in view of the current LHC results?

Concentrating on

- Dark Matter (DM): Because it's there but anywhere.
- SUSY: *The* most complete theory of BSM but under stress (?) by LHC. ILC strenghts:
 - Loop-hole free searches.
 - Compressed spectra.

- Several talks in this conference have already shown that ILC has a great potential for *indirect* discovery of BSM (Jeans (411), Ogawa (755), Bilokin (420), and Reuter (912) in Higgs and EW sessions).
- But: Can ILC still *directly* discover BSM, in view of the current LHC results?

Concentrating on

- Dark Matter (DM): Because it's there but anywhere.
- SUSY: *The* most complete theory of BSM but under stress (?) by LHC. ILC strenghts:
 - Loop-hole free searches.
 - Compressed spectra.

- Several talks in this conference have already shown that ILC has a great potential for *indirect* discovery of BSM (Jeans (411), Ogawa (755), Bilokin (420), and Reuter (912) in Higgs and EW sessions).
- But: Can ILC still *directly* discover BSM, in view of the current LHC results?

Concentrating on

- Dark Matter (DM): Because it's there but anywhere.
- SUSY: *The* most complete theory of BSM but under stress (?) by LHC. ILC strenghts:
 - Loop-hole free searches.
 - Compressed spectra.

- Several talks in this conference have already shown that ILC has a great potential for *indirect* discovery of BSM (Jeans (411), Ogawa (755), Bilokin (420), and Reuter (912) in Higgs and EW sessions).
- But: Can ILC still *directly* discover BSM, in view of the current LHC results?

Concentrating on

- Dark Matter (DM): Because it's there but anywhere.
- SUSY: *The* most complete theory of BSM but under stress (?) by LHC. ILC strenghts:
 - Loop-hole free searches.
 - Compressed spectra.

- Several talks in this conference have already shown that ILC has a great potential for *indirect* discovery of BSM (Jeans (411), Ogawa (755), Bilokin (420), and Reuter (912) in Higgs and EW sessions).
- But: Can ILC still *directly* discover BSM, in view of the current LHC results?

Concentrating on

- Dark Matter (DM): Because it's there but anywhere.
- SUSY: *The* most complete theory of BSM but under stress (?) by LHC. ILC strenghts:
 - Loop-hole free searches.
 - Compressed spectra.

The ILC strong points for searches

- e^+e^- collider with $E_{CMS} = 250 500$ (- 1000) GeV, and polarised beams
- e^+e^- means EW-production \Rightarrow Low background.
 - Detectors w/ $\sim 4\pi$ coverage.
 - Rad. hardness not needed: only few $\% X_0$ in front of calorimters.
 - No trigger
- e^+e^- means colliding point-like objects \Rightarrow initial state known
- 20 year running \rightarrow 4 ab⁻¹ @ 500 GeV, 2 ab⁻¹ @ 250 GeV.
- Construction under political consideration in Japan.

Dark Matter

Bullet cluster

Mikael Berggren (DESY)

BSM discovery at ILC

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Dark Matter

三日 のへの

イロト イヨト イヨト イヨト

Dark Matter

Dark Matter

Mikael Berggren (DESY)

BSM discovery at ILC

ICHEP18 4 / 15

Dark Matter

Dark Matter

Only WIMPs

- What if this is the only accessible NP ?
- Search for direct WIMP pair-production at collider : Need to make the invisible visible:
 - Require initial state radiation which will recoil against "nothing" ⇒ Mono-X search.
 - At ILC: $e^+e^- \rightarrow \chi \chi \gamma$, ie. X is a γ

- ILC simulation studies: arXiv:1206.6639v1, A. Chaus, Thesis, M. Habermehl, Thesis, in preparation.
- Model-independent Effective operator approach to "?"
 - Analyse as an effective four-point interaction. Strength = Λ.
 Allowable II direct observation the mediator is beyond reach. Most true at ILC, but not at LHC.
 - Write down all possible Lorentz-structures of the operators.
 - Exclusion regions in M_{χ}/Λ plane, for each operator.

Only WIMPs

- What if this is the only accessible NP ?
- Search for direct WIMP pair-production at collider : Need to make the invisible visible:
 - Require initial state radiation which will recoil against "nothing" ⇒ Mono-X search.
 - At ILC: $e^+e^- \rightarrow \chi \chi \gamma$, ie. X is a γ

- ILC simulation studies: arXiv:1206.6639v1, A. Chaus, Thesis, M. Habermehl, Thesis, in preparation.
- Model-independent Effective operator approach to "?"
 - Analyse as an effective four-point interaction. Strength = Λ .
 - Allowable if direct observation the mediator is beyond reach. Mostly true at ILC, but not at LHC !
 - Write down all possible Lorentz-structures of the operators.
 - Exclusion regions in M_{χ}/Λ plane, for each operator.

《曰》《圖》《曰》《曰》 ([]]]

Only WIMPs

- What if this is the only accessible NP ?
- Search for direct WIMP pair-production at collider : Need to make the invisible visible:
 - Require initial state radiation which will recoil against "nothing" ⇒ Mono-X search.
 - At ILC: $e^+e^- \rightarrow \chi \chi \gamma$, ie. X is a γ

- ILC simulation studies: arXiv:1206.6639v1, A. Chaus, Thesis, M. Habermehl, Thesis, in preparation.
- Model-independent Effective operator approach to "?"
 - Analyse as an effective four-point interaction. Strength = Λ .
 - Allowable if direct observation the mediator is beyond reach. Mostly true at ILC, but not at LHC !
 - Write down all possible Lorentz-structures of the operators.
 - Exclusion regions in M_{χ}/Λ plane, for each operator.

- Examples:
 - Vector operator ("spin independent"), Note how useful beam-polarisation is!
- At LHC, EffOp can't be used
 ⇒ use "simplified models"
- Need to translate Λ to M_{med} : $M_{med} = \sqrt{g_{SM}g_{DM}}\Lambda$

ILC/LHC complementarity

- EFC: coupling to hadrons, ILC: coupling to leptons.
- LHC has best $M_{\rm g}$ reach, ILC best $M_{\rm grad}$ reach, ILC best

(日本) (日本) (日本) (日本)

- Examples:
 - Vector operator ("spin independent"), Note how useful beam-polarisation is!
- At LHC, EffOp can't be used ⇒ use "simplified models"
- Need to translate Λ to M_{med} : $M_{med} = \sqrt{g_{SM}g_{DM}}\Lambda$

ILC/LHC complementarity

- LHC: coupling to hadrons, ILC: coupling to leptons.
- LHC has best M_x reach, ILC best M_{med} reach

- Examples:
 - Vector operator ("spin independent"), Note how useful beam-polarisation is!
- At LHC, EffOp can't be used ⇒ use "simplified models"
- Need to translate Λ to M_{med} : $M_{med} = \sqrt{g_{SM}g_{DM}}\Lambda$

ILC/LHC complementarity

- LHC: coupling to hadrons, ILC: coupling to leptons.
- LHC has best M_x reach, ILC best M_{med} reach

- Examples:
 - Vector operator ("spin independent"), Note how useful beam-polarisation is!
- At LHC, EffOp can't be used ⇒ use "simplified models"
- Need to translate Λ to M_{med} : $M_{med} = \sqrt{g_{SM}g_{DM}}\Lambda$

ILC/LHC complementarity

- LHC: coupling to hadrons, ILC: coupling to leptons.
- LHC has best M_{χ} reach, ILC best M_{med} reach

- Examples:
 - Vector operator ("spin independent"), Note how useful beam-polarisation is!
- At LHC, EffOp can't be used ⇒ use "simplified models"
- Need to translate Λ to M_{med} : $M_{med} = \sqrt{g_{SM}g_{DM}}\Lambda$

ILC/LHC complementarity

- LHC: coupling to hadrons, ILC: coupling to leptons.
- LHC has best M_{χ} reach, ILC best M_{med} reach

비교 《 문 》 《 문 》 《 팀 》 《 비 》

SUSY

SUSY@LHC: Does this make us depressed ?

Only a selection of available mass limits. Probe *up to* the quoted mass limit for m =0 GeV unless stated otherwise

Mikael Berggren (DESY)

BSM discovery at ILC

ICHEP18 7/15

SUSY

SUSY@LHC: No! Read the fine-print !

SUSY: What do we know ?

Naturalness, hierarchy, DM, g-2 all prefers light electro-weak sector.

- Except for 3d gen. squarks, the coloured sector LHC:s *tour de force* doesn't enter the game.
- Both if the LSP is mainly higgsino or mainly wino, electro-weak sector is "compressed".
- Then, most sparticle-decays are via cascades. At the end of these cascades, the mass difference is small.
- So, even if LHC finds SUSY, it might be very hard to identify the details.

SUSY: What do we know ?

Naturalness, hierarchy, DM, g-2 all prefers light electro-weak sector.

- Except for 3d gen. squarks, the coloured sector LHC:s tour de force - doesn't enter the game.
- Both if the LSP is mainly higgsino or mainly wino, electro-weak sector is "compressed".
- Then, most sparticle-decays are via cascades. At the end of these cascades, the mass difference is small.
- So, even if LHC finds SUSY, it might be very hard to identify the details.

SUSY@ILC: Loop-hole free searches

- All is known for given masses, due to SUSY-principle: "sparticles couples as particles".
- This doesn't depend on the SUSY breaking mechanism !
- Obviously: There is one NLSP, and it must have 100 % BR to it's SM-partner and the LSP.

SUSY with no loop-holes

SUSY@ILC: Loop-hole free searches

- All is known for given masses, due to SUSY-principle: "sparticles couples as particles".
- This doesn't depend on the SUSY breaking mechanism !
- Obviously: There is one NLSP, and it must have 100 % BR to it's SM-partner and the LSP.

So, at ILC :

- Model independent exclusion/ discovery reach in $M_{NLSP} M_{LSP}$ plane.
- Repeat for all NLSP:s.
- Cover entire parameter-space in a few plots
- No fine-print!

SUSY with no loop-holes

SUSY@ILC: Loop-hole free searches

- All is known for given masses, due to SUSY-principle: "sparticles couples as particles".
- This doesn't depend on the SUSY breaking mechanism !
- Obviously: There is one NLSP, and it must have 100 % BR to it's SM-partner and the LSP.

So, at ILC :

- Model independent exclusion/ discovery reach in $M_{NLSP} M_{LSP}$ plane.
- Repeat for all NLSP:s.
- Cover entire parameter-space in a few plots
- No fine-print!

- "Simplified model" = assume sparticle has 100 % BR to particle+LSP ⇒ model-dependent
- NLSP search = sparticle must have 100 % BR to particle+LSP.. ⇒ model-independent
- A worst-case example for ILC: $\tilde{\tau}_1$ NLSP (minimal σ)
 - Typical signal (arXiv:1508.04383)
 - Scan over mass-plane (arXiv:1308.1461)

- "Simplified model" = assume sparticle has 100 % BR to particle+LSP ⇒ model-dependent
- NLSP search = sparticle must have 100 % BR to particle+LSP.. ⇒ model-independent
- A worst-case example for ILC: $\tilde{\tau}_1$ NLSP (minimal σ)
 - Typical signal (arXiv:1508.04383)
 - Scan over mass-plane (arXiv:1308.1461)

<<p>(日本)

- "Simplified model" = assume sparticle has 100 % BR to particle+LSP ⇒ model-dependent
- NLSP search = sparticle must have 100 % BR to particle+LSP.. ⇒ model-independent
- A worst-case example for ILC:

 [˜]₁ NLSP (minimal σ)
 - Typical signal (arXiv:1508.04383)
 - Scan over mass-plane (arXiv:1308.1461)

 $\delta(M_{\tilde{\chi}_1^0}) = 0.15\%, \, \delta(M_{\tilde{\tau}_1}) = 0.19\%$

BSM discovery at ILC

ICHEP18 10 / 15

- "Simplified model" = assume sparticle has 100 % BR to particle+LSP ⇒ model-dependent
- NLSP search = sparticle must have 100 % BR to particle+LSP.. ⇒ model-independent
- A worst-case example for ILC:

 [˜]₁ NLSP (minimal σ)
 - Typical signal (arXiv:1508.04383)
 - Scan over mass-plane (arXiv:1308.1461)

A B F A B F

A B F A B F

Why compressed spectra ?

Why would one expect the spectrum to be compressed ?

- Natural SUSY: • $m_Z^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$ • \Rightarrow Low fine-tuning \Rightarrow $\mu = \mathcal{O}$ (weak scale).
- Wino-like LSP: Same conclusion.
- But also: the data ...

Why compressed spectra ?

Why would one expect the spectrum to be compressed ?

Natural SUSY:

•
$$m_Z^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$$

• \Rightarrow Low fine-tuning \Rightarrow
 $\mu = \mathcal{O}(\text{weak scale}).$

- Wino-like LSP: Same conclusion.
- But also: the data ...

quite generic: Parameter-scan by T. Tanabe:

A (10) A (10)

Why compressed spectra?

Why would one expect the spectrum to be compressed ?

Natural SUSY:

•
$$m_Z^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$$

• \Rightarrow Low fine-tuning \Rightarrow
 $\mu = \mathcal{O}(\text{weak scale}).$

Wino-like LSP: Same conclusion.

quite generic:

Parameter-scan by T. Tanabe:

A D M A A A M M

A B F A B F

Why compressed spectra ?

Why would one expect the spectrum to be compressed ?

Natural SUSY:

•
$$m_Z^2 = 2 \frac{m_{H_u}^2 \tan^2 \beta - m_{H_d}^2}{1 - \tan^2 \beta} - 2 |\mu|^2$$

• \Rightarrow Low fine-tuning \Rightarrow
 $\mu = \mathcal{O}$ (weak scale).

- Wino-like LSP: Same conclusion.
- But also: the data ...

quite generic: Parameter-scan by T. Tanabe:

pMSSM11 fit by Mastercode to LHC13/LEP/g-2/DM(=100% LSP)/presision observables (arXiv:1710.11091):

pMSSM11 fit by Mastercode to LHC13/LEP/g-2/DM(=100% LSP)/presision observables (arXiv:1710.11091):

A B A A B A

pMSSM11 fit by Mastercode to LHC13/LEP/g-2/DM(=100% LSP)/presision observables (arXiv:1710.11091):

 $M_{\tilde{\chi}_1^{\pm}}$ - $M_{\tilde{\chi}_1^0}$ plane

BSM discovery at ILC

ICHEP18 12 / 15

Image: A matrix

pMSSM11 fit by Mastercode to LHC13/LEP/g-2/DM(=100% LSP)/presision observables (arXiv:1710.11091):

BSM discovery at ILC

- Di- and tri-lepton, $M_{\tilde{\chi}_2^0} = M_{\tilde{\chi}_1^\pm}$, only Z or W decays. 7 TeV, 4.7 fb⁻¹ (in grey) and 13 TeV, 36 fb⁻¹ arXiv:1803.02762. No progress at low $\Delta(M)$.
- New analysis designed for low Δ(M) arXiv:1712.08119. Absolute limit (any Δ(M)) still LEP.

・ 同 ト ・ 日 ト ・ 日 ト

- Di- and tri-lepton, $M_{\tilde{\chi}_2^0} = M_{\tilde{\chi}_1^{\pm}}$, only Z or W decays. 7 TeV, 4.7 fb⁻¹ (in grey) and 13 TeV, 36 fb⁻¹ arXiv:1803.02762. No progress at low $\Delta(M)$.
- New analysis designed for low Δ(M) arXiv:1712.08119. Absolute limit (any Δ(M)) still LEP.

《曰》《圖》《曰》《曰》 되는

- On the 7 TeV plot, with LEP (brown) and the low Δ(M) search (magenta)...
- At ILC: Various benchmarks studied w/ detailed simulation: M_{χ̃1}⁰ = 100-170 GeV, Δ(M) = 0.8 to 20 GeV.
- Projected discovery reaches for LHC, HL-LHC, ILC-500, and ILC-1000.

ILC/LHC complementarity

* LHC has best reach in M_{22} at high $\Delta(M)$, ILC at low $\Delta(M)$.

・ 同 ト ・ 日 ト ・ 日 ト

- On the 7 TeV plot, with LEP (brown) and the low Δ(M) search (magenta)...
- At ILC: Various benchmarks studied w/ detailed simulation: M_{χ̃1}⁰ = 100-170 GeV, Δ(M) = 0.8 to 20 GeV.
- Projected discovery reaches for LHC, HL-LHC, ILC-500, and ILC-1000.

ILC/LHC complementarity

- On the 7 TeV plot, with LEP (brown) and the low $\Delta(M)$ search (magenta)...
- At ILC: Various benchmarks studied w/ detailed simulation: M_{χ̃1}⁰ = 100-170 GeV, Δ(M) = 0.8 to 20 GeV.
- Projected discovery reaches for LHC, HL-LHC, ILC-500, and ILC-1000.

ILC/LHC complementarity

 $\begin{array}{l} \label{eq:linear} \operatorname{LHC} \mbox{ has best reach in } M_{\rm eff} \mbox{ at low } \Delta(M), \mbox{ LHC at low } \Delta(M), \end{array}$

글 🕨 🖌 글

- On the 7 TeV plot, with LEP (brown) and the low Δ(M) search (magenta)...
- At ILC: Various benchmarks studied w/ detailed simulation: M_{χ̃1}⁰ = 100-170 GeV, Δ(M) = 0.8 to 20 GeV.
- Projected discovery reaches for LHC, HL-LHC, ILC-500, and ILC-1000.

ILC/LHC complementarity

- On the 7 TeV plot, with LEP (brown) and the low Δ(M) search (magenta)...
- At ILC: Various benchmarks studied w/ detailed simulation: M_{χ̃1}⁰ = 100-170 GeV, Δ(M) = 0.8 to 20 GeV.
- Projected discovery reaches for LHC, HL-LHC, ILC-500, and ILC-1000.

ILC/LHC complementarity

 LHC has best reach in M₂ + att high (M), /LC at low Δ(M).

- On the 7 TeV plot, with LEP (brown) and the low Δ(M) search (magenta)...
- At ILC: Various benchmarks studied w/ detailed simulation: M_{χ̃1}⁰ = 100-170 GeV, Δ(M) = 0.8 to 20 GeV.
- Projected discovery reaches for LHC, HL-LHC, ILC-500, and ILC-1000.

ILC/LHC complementarity

 LHC has best reach in M_{χ[±]₁} at high Δ(M), ILC at low Δ(M),

- On the 7 TeV plot, with LEP (brown) and the low Δ(M) search (magenta)...
- At ILC: Various benchmarks studied w/ detailed simulation: M_{χ̃1}⁰ = 100-170 GeV, Δ(M) = 0.8 to 20 GeV.
- Projected discovery reaches for LHC, HL-LHC, ILC-500, and ILC-1000.

ILC/LHC complementarity

• LHC has best reach in $M_{\tilde{\chi}_1^{\pm}}$ at high $\Delta(M)$, ILC at low $\Delta(M)$,

▲□ > ▲圖 > ▲ 글 > ▲ 글 > _ 크)님

- On the 7 TeV plot, with LEP (brown) and the low Δ(M) search (magenta)...
- At ILC: Various benchmarks studied w/ detailed simulation: M_{χ˜1}⁰ = 100-170 GeV, Δ(M) = 0.8 to 20 GeV.
- Projected discovery reaches for LHC, HL-LHC, ILC-500, and ILC-1000.

ILC/LHC complementarity

• LHC has best reach in $M_{\tilde{\chi}_1^{\pm}}$ at high $\Delta(M)$, ILC at low $\Delta(M)$,

▲□ > ▲圖 > ▲ 글 > ▲ 글 > _ 크)님

- On the 7 TeV plot, with LEP (brown) and the low Δ(M) search (magenta)...
- At ILC: Various benchmarks studied w/ detailed simulation: M_{χ˜1}⁰ = 100-170 GeV, Δ(M) = 0.8 to 20 GeV.
- Projected discovery reaches for LHC, HL-LHC, ILC-500, and ILC-1000.

ILC/LHC complementarity

 LHC has best reach in M_{χ̃1}[±] at high Δ(M), ILC at low Δ(M),

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusions

Conclusions

- Sometimes, the capabilities for the direct discovery of new particles at the ILC exceed those of the LHC, since ILC provides
 - Well-defined initial state
 - Clean environment without QCD backgrounds
 - Hermetic detectors, with no need for triggering.
 - Extendability in energy and polarised beams.
- Many ILC LHC synergies from energy-reach vs. sensitivity.
 - Dark matter: Leptophilic vs. Leptophobic Higher mass and higher coupling vs. lower mass and lower coupling
 - SUSY: High mass vs. Low $\Delta(M)$
 - If both ILC and LHC observes SUSY, the (sub)percent level measurements from ILC of the lower states will profit LHC to disentangle long decay-chains of higher states.

• Even in the most pessimistic case, with no LHC discoveries, the ILC offers distinct and very powerful strategies for finding BSM!

Conclusions

Conclusions

- Sometimes, the capabilities for the direct discovery of new particles at the ILC exceed those of the LHC, since ILC provides
 - Well-defined initial state
 - Clean environment without QCD backgrounds
 - Hermetic detectors, with no need for triggering.
 - Extendability in energy and polarised beams.
- Many ILC LHC synergies from energy-reach vs. sensitivity.
 - Dark matter: Leptophilic vs. Leptophobic Higher mass and higher coupling vs. lower mass and lower coupling
 - SUSY: High mass vs. Low $\Delta(M)$
 - If both ILC and LHC observes SUSY, the (sub)percent level measurements from ILC of the lower states will profit LHC to disentangle long decay-chains of higher states.

• Even in the most pessimistic case, with no LHC discoveries, the ILC offers distinct and very powerful strategies for finding BSM!

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ●

Conclusions

Conclusions

- Sometimes, the capabilities for the direct discovery of new particles at the ILC exceed those of the LHC, since ILC provides
 - Well-defined initial state
 - Clean environment without QCD backgrounds
 - Hermetic detectors, with no need for triggering.
 - Extendability in energy and polarised beams.
- Many ILC LHC synergies from energy-reach vs. sensitivity.
 - Dark matter: Leptophilic vs. Leptophobic Higher mass and higher coupling vs. lower mass and lower coupling
 - SUSY: High mass vs. Low $\Delta(M)$
 - If both ILC and LHC observes SUSY, the (sub)percent level measurements from ILC of the lower states will profit LHC to disentangle long decay-chains of higher states.
- Even in the most pessimistic case, with no LHC discoveries, the ILC offers distinct and very powerful strategies for finding BSM!

Backup

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

BACKUP SLIDES

Why compressed spectra ? pMSSM scans

More loop-hole free plots

