(In)dependence of various LFV observables in the non-minimal SUSY

Wojciech Kotlarski
Technische Universität Dresden

ICHEP 2018,
July 7, 2018, Seoul, Korea

in collaboration with D. Stöckinger and H. Stöckinger-Kim
R-symmetry

- additional symmetry of the SUSY algebra allowed by the Haag - Łopuszański - Sohnius theorem

- for \(N=1 \) it is a global \(U_R(1) \) symmetry under which the SUSY generators are charged

- implies that the spinorial coordinates are also charged \(Q_R(\theta) = 1, \ \theta \to e^{i\alpha} \theta \)

- superpotential example

\[
\mathcal{L} \equiv \int d^2 \theta \ W
\]

- Superpotential is polynomial in fields. For \(W \) to transform homogeneously superfields must have definite R-charges

\[
e^{i\alpha Q_R} \quad e^{i\alpha Q_R} \quad e^{i\alpha (Q_R - 1)}
\]

\[
\Phi = \phi(y) + \sqrt{2} \theta \psi(y) + \theta \theta F(y)
\]

- Similarly one can work out other parts of the Lagrangian
R-symmetry

- additional symmetry of the SUSY algebra allowed by the Haag - Łopuszański - Sohnius theorem

- for N=1 it is a global $U_R(1)$ symmetry under which the SUSY generators are charged

- implies that the spinorial coordinates are also charged $Q_R(\theta) = 1, \theta \rightarrow e^{i\alpha} \theta$

- superpotential example

(we want it to be) \mathcal{L}

$\mathcal{L} \ni \int d^2\theta \ W$

- Superpotential is polynomial in fields. For W to transform homogeneously superfields must have definite R-charges

$e^{i\alpha Q_R}$

$\Phi = \phi(y) + \sqrt{2}\theta \psi(y) + \theta \theta F(y)$

- Similarly one can work out other parts of the Lagrangian
R-symmetry

- additional symmetry of the SUSY algebra allowed by the Haag - Łopuszański - Sohnius theorem

- for N=1 it is a global $U_R(1)$ symmetry under which the SUSY generators are charged

- implies that the spinorial coordinates are also charged $Q_R(\theta) = 1, \theta \rightarrow e^{i\alpha} \theta$

- superpotential example

(we want it to be) R-invariant $\quad \mathcal{L} \quad \ni \quad \int d^2 \theta \quad W$

- Superpotential is polynomial in fields. For W to transform homogeneously superfields must have definite R-charges

$$ e^{i\alpha Q_R} \quad e^{i\alpha Q_R} \quad e^{i\alpha (Q_R - 1)} $$

$$ \Phi = \phi(y) + \sqrt{2} \theta \psi(y) + \theta \theta F(y) $$

- Similarly one can work out other parts of the Lagrangian
R-symmetry

- additional symmetry of the SUSY algebra allowed by the Haag - Łopuszański - Sohnius theorem

- for N=1 it is a global $U_R(1)$ symmetry under which the SUSY generators are charged

- implies that the spinorial coordinates are also charged $Q_R(\theta) = 1, \theta \rightarrow e^{i\alpha} \theta$

- superpotential example

(we want it to be) R-invariant

Superpotential is polynomial in fields. For W to transform homogeneously superfields must have definite R-charges

$$e^{i\alpha Q_R} \Phi = e^{i\alpha Q_R} \phi(y) + \sqrt{2} \theta \psi(y) + \theta \theta F(y)$$

- Similarly one can work out other parts of the Lagrangian
Low-energy R-symmetry realization

- Different possible models that one can construct
- "Natural" choice

\[e^{i\alpha Q_R} \Phi = e^{i\alpha Q_R} \phi(y) + \sqrt{2} \theta \psi(y) + \theta \theta F(y) \]

leptons and quarks

- Good: no barion and lepton number violating terms
- Bad: No Majorana masses for higgsinos and gauginos

- Higgs

\[Q_R = 1 \quad Q_R = 1 \quad Q_R = 0 \]
\[Q_R = 0 \quad Q_R = 0 \quad Q_R = -1 \]

One way to fix it: Dirac masses

Minimal R-Symmetric Supersymmetric Standardmodel (MRSSM)

Kriis et al. arXiv:0712.3029

<table>
<thead>
<tr>
<th>Field</th>
<th>SU(3)\text{c}</th>
<th>SU(2)\text{L}</th>
<th>U(1)\text{Y}</th>
<th>U(1)\text{R}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singlet (\hat{S})</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Triplet (\hat{T})</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Octet (\hat{O})</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R-Higgses (\hat{R}_{u})</td>
<td>1</td>
<td>2</td>
<td>-1/2</td>
<td>2</td>
</tr>
<tr>
<td>R-Higgses (\hat{R}_{d})</td>
<td>1</td>
<td>2</td>
<td>1/2</td>
<td>2</td>
</tr>
</tbody>
</table>

Additional fields:

\[W = \mu_d \hat{R}_d \hat{H}_d + \mu_u \hat{R}_u \hat{H}_u \]
\[+ \Lambda_d \hat{R}_d \hat{T} \hat{H}_d + \Lambda_u \hat{R}_u \hat{T} \hat{H}_u + \lambda_d \hat{S} \hat{R}_d \hat{H}_d + \lambda_u \hat{S} \hat{R}_u \hat{H}_u \]
\[- Y_d \hat{q} \hat{H}_d - Y_e \hat{\ell} \hat{H}_d + Y_u \hat{u} \hat{q} \hat{H}_u \]
MSSM vs. MRSSM

- **superpotential**
 \[
 \mu \hat{H}_u \hat{H}_d - Y_d \hat{d} \hat{q} \hat{H}_d - Y_e \hat{e} \hat{l} \hat{H}_d + Y_u \hat{u} \hat{q} \hat{H}_u
 \]

- **soft-SUSY breaking terms**
 - B_μ - term
 - soft scalar masses
 - Majorana gaugino masses
 - A - terms

- **superpotential**
 \[
 \mu_d \hat{R}_d \hat{H}_d + \mu_u \hat{R}_u \hat{H}_u - Y_d \hat{d} \hat{q} \hat{H}_d - Y_e \hat{e} \hat{l} \hat{H}_d + Y_u \hat{u} \hat{q} \hat{H}_u \\
 \Lambda_d \hat{R}_d \hat{T} \hat{H}_d + \Lambda_u \hat{R}_u \hat{T} \hat{H}_u + \lambda_d \hat{S} \hat{R}_d \hat{H}_d + \lambda_u \hat{S} \hat{R}_u \hat{H}_u
 \]

- **soft-SUSY breaking terms**
 - B_μ - term
 - soft scalar masses
 - Dirac gaugino masses
 - no A-terms

One way to fix it: **Dirac masses**

Minimal R-Symmetric Supersymmetric Standardmodel (MRSSM)

<table>
<thead>
<tr>
<th>Additional fields</th>
<th>$SU(3)_C$</th>
<th>$SU(2)_L$</th>
<th>$U(1)_Y$</th>
<th>$U(1)_R$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singlet</td>
<td>\hat{X}</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Triplet</td>
<td>\hat{X}</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Octet</td>
<td>\hat{O}</td>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>R-Higgses</td>
<td>\hat{R}_u</td>
<td>1</td>
<td>2</td>
<td>$-1/2$</td>
</tr>
<tr>
<td></td>
<td>\hat{R}_d</td>
<td>1</td>
<td>2</td>
<td>1/2</td>
</tr>
</tbody>
</table>

Kribs, Popitz, Weiter (2008)
MSSM vs. MRSSM

- superpotencial
 \[\mu \hat{H}_u \hat{H}_d \]
 \[-Y_d \hat{d} \hat{q} \hat{H}_d - Y_e \hat{e} \hat{l} \hat{H}_d + Y_u \hat{u} \hat{q} \hat{H}_u \]

- soft-SUSY breaking terms
 - \(B_\mu \) - term
 - soft scalar masses
 - Majorana gaugino masses
 - \(\Lambda \) - terms

- superpotencial
 \[\mu_d \hat{R}_d \hat{H}_d + \mu_u \hat{R}_u \hat{H}_u \]
 \[-Y_d \hat{d} \hat{q} \hat{H}_d - Y_e \hat{e} \hat{l} \hat{H}_d + Y_u \hat{u} \hat{q} \hat{H}_u \]
 \[\Lambda_d \hat{R}_d \hat{T} \hat{H}_d + \Lambda_u \hat{R}_u \hat{T} \hat{H}_u + \lambda_d \hat{S} \hat{R}_d \hat{H}_d + \lambda_u \hat{S} \hat{R}_u \hat{H}_u \]

- soft-SUSY breaking terms
 - \(B_\mu \) -term
 - soft scalar masses
 - Dirac gaugino masses
 - no \(\Lambda \) -terms

One way to fix it: Dirac masses
Minimal R-Symmetric Supersymmetric Standardmodel (MRSSM)

Kribs et al. arXiv:0712.2039

<table>
<thead>
<tr>
<th>Additional fields:</th>
<th>SU(3)</th>
<th>SU(2)</th>
<th>U(1)Y</th>
<th>U(1)R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singlet</td>
<td>(\hat{S})</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Triplet</td>
<td>(\hat{T})</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Octet</td>
<td>(\hat{O})</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>R-Higgses</td>
<td>(\hat{R}_u)</td>
<td>1</td>
<td>2</td>
<td>(-1/2)</td>
</tr>
<tr>
<td></td>
<td>(\hat{R}_d)</td>
<td>1</td>
<td>2</td>
<td>1/2</td>
</tr>
</tbody>
</table>

Kribs, Popitz, Weiter (2008)
Particle content summary: MSSM vs. MRSSM

<table>
<thead>
<tr>
<th></th>
<th>Higgs</th>
<th></th>
<th>R-Higgs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CP-even</td>
<td>CP-odd</td>
<td>charged</td>
<td>charginos</td>
</tr>
<tr>
<td>MSSM</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>MRSSM</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2+2</td>
</tr>
</tbody>
</table>

Different number of physical states

Completely new states

<table>
<thead>
<tr>
<th></th>
<th>neutralino</th>
<th>gluino</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSSM</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>MRSSM</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
As the LHC still sees nothing, we look into low energy experiments:

- prospects for $g-2$ measurement

$$a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = (28.1 \pm 6.3^{\text{exp}} \pm 3.6^{\text{th}}) \times 10^{-10}$$

- prospect for $\mu \rightarrow e\gamma$

 current: 4.2×10^{-13} (MEG)

 future: $\approx 4 \times 10^{-14}$

- prospect for $\mu \rightarrow e$ conversion

 current: 7×10^{-13} (SINDRUM-II)

 future: $\approx 10^{-16}$
Relation between \((g - 2)_\mu\) and LFV observables

\[\mu \rightarrow e \]

\[\mu \rightarrow e\gamma \]

\[(g - 2)_\mu \]

\[D, A_{1}^{21}, A_{2}^{21} \]

\[A_{2}^{21} \]

\[A_{2}^{22} \]

each observable requires a dedicated experiment
\((g - 2)_\mu\) in the MSSM

Chargino

\[\propto m_\mu^2 \tan \beta \mu M_2 \]

\[\tilde{H}_2^+ \quad \tilde{W}^+ \quad \tilde{H}_1^+ \quad \tilde{W}^+ \]

\[\mu_R \quad \tilde{\nu}_\mu \quad \mu_L \]

Neutralino

\[\propto m_\mu^2 \tan \beta \mu M_1 \]

\[\tilde{B} \quad \tilde{B} \quad \tilde{H}_2^0 \quad \tilde{H}_1^0 \]

\[\mu_R \quad \tilde{\mu}_R \quad \tilde{\mu}_L \quad \mu_L \]

and similarly for \(\mu \to e\gamma\) and \(\mu \to e\) - as long as \(\tan \beta\) is not very small all considered observables are dominated by the dipole contributions and therefore strongly correlated.

\[\text{CR}(\mu \to e) \propto \alpha \cdot \text{BR}(\mu \to e\gamma) \]

\[\text{CR}(\mu \to e) \leq 3 \cdot 10^{-15} \]
$(g - 2)_\mu$ in the MRSSM

Chargino

$\propto m^2_\mu \tan \beta \mu M_2$

Neutralino

$\propto m^2_\mu \tan \beta \mu M_1$

There is one class of enhanced diagram though
\((g - 2)_\mu\) in the MRSSM

- It is possible to obtain large contribution to g-2

- The price to pay are light EW-inos, in tension with experiment
For $|\lambda_d| \approx 1$ the dipoles dominate: $g-2$ scales linearly with λ_d, while $\mu\to e\gamma$ and $\mu\to e$ quadratically.

For $|\lambda_d| \approx 1$ the ratio of $\mu\to e\gamma$ over $\mu\to e$ is of the order 100, as in the MSSM where $\text{CR}(\mu \to e) \propto \alpha \cdot \text{BR}(\mu \to e\gamma)$.

Near $|\lambda_d| \approx 0$ the ratio is of order 10.
In the region dominated by the dipoles the \(\text{br}(\mu \to e\gamma) \sim \sin^2 2\theta \cdot a_\mu \)

- In the MRSSM this is a region of \(|\lambda_d| \gtrsim 1 \), in the MSSM \(\tan \beta \gtrsim 5 \)
Conclusions:

- Two distinct cases: $|\lambda_d| \approx 0$, $|\lambda_d| > 0$

- For large $|\lambda_d|$ observables get dominated by photon „penguins” and are strongly correlated

- Generating sufficient contribution to g-2 through large λ_d overshots LFV observables (unless one fine-tunes the mixing angle)

- Similar things happen for Λ_d

- For $|\lambda_d| \approx 0$ the g-2 and $\mu \rightarrow e\gamma$ are still correlated but the $\mu \rightarrow e$ conversion rate can be dominated by so-called charge radius, Z-penguin and box contributions

- It is therefore possible to find a parameter points not excluded by current experimental results, within reach of the next $\mu \rightarrow e$ conversion (but not $\mu \rightarrow e\gamma$) experiment
Backup
The SM-like Higgs boson mass in the MRSSM has been calculated including full 1-loop and leading 2-loop corrections1,2

Impact of EWPO was analyzed1

MRSSM can predicts correct dark matter relic density while being in agreement with dark matter direct detection bounds3

Its EW signatures were checked against available 7 and 8 TeV data3

\textbf{1.} P. Dießner, J. Kalinowski, W. Kotlarski and D. Stöckinger, JHEP \textbf{1412} (2014) 124

\textbf{3.} P. Dießner, J. Kalinowski, W. Kotlarski and D. Stöckinger, JHEP \textbf{1603} (2016) 007
2 component dark matter

- consider scenarios where the lightest particle with $R=1$ is neutralino or sneutrino with mass m_{LSP1}

- if $m_{R_1^0} < 2m_{\text{LSP1}}$, lightest neutral R-Higgs is also stable

- two SUSY dark matter candidates with relic densities Ω_1 and Ω_2

- requirements
 - $\Omega_{\text{total}}h^2 \equiv (\Omega_1 + \Omega_2)h^2 \approx 0.11$
 - substantial fraction $\Omega_2/\Omega_{\text{total}}$

- (for now) best points are not collinear friendly:
 \[m_{\tilde{\chi}_1^0} = 367 \text{ GeV} \]
 \[m_{R_1^0} = 571 \text{ GeV} \]
Sgluon pair production at 13 TeV LHC

- Analysis of the sgluon pair production with subsequent decay into tt pairs. Recasting ATLAS search in the same-sign lepton channel using 3.2/ fb of integrated luminosity.

- Signal simulated at NLO using MadGraph5_aMC@NLO + FeynRules + NLOCT and matched to parton shower in the MC@NLO scheme.

- Detector response parametrized using Delphes3.

- Analysis validated on background processes $t\bar{t}l^+l^-, t\bar{t}l^\pm\nu$.

- Mass of pair produced real sgluons decaying with $\text{BR}(O \rightarrow tt) = 1$ excluded up to 950 GeV.
Leading order analysis

LO cross-sections for sparticle production at the LHC at $\sqrt{s} = 13$ TeV

![Graph showing cross-sections for sparticles production in MSSM and MRSSM](image)
NLO improvements

Reduction of theoretical uncertainty

Shift of cross-sections

\(pp \rightarrow \tilde{u}_L \tilde{u}_R, m_{\tilde{q}} = 1500 \text{ GeV}, m_{\tilde{g}} = 2000 \text{ GeV} \)

\(\mu_R = \mu_F \) [GeV]

\(\sigma \) [fb]

\(K(\bar{q}q \rightarrow \bar{q}q) \)

\(m_{\tilde{g}} = 2000 \text{ GeV}, m_{\tilde{O}} = 5000 \text{ GeV} \)

\(\bar{q}q \) NLO

\(\bar{q}q \) LO

\(\bar{q}q \) NLO

\(\bar{q}q \) LO

Right figure summed over flavors

Reduction of theoretical uncertainty

Shift of cross-sections
Two possible definitions of K-factors:

- unsummed over L- and R-squarks
- summed
Differential distributions

\[P_T, BM1, \tilde{q}_L, \tilde{q}_L^+ \]

- \(\sigma \text{ per bin [pb]} \)
- \(K(\text{NLO}) \)

Graph showing differential distributions with NLO and LO comparisons.
\(\mu \rightarrow e\gamma \) in the MRSSM

- first analysis performed by Fok and Kribs [Phys. Rev. D 82, 035010 (2010)]

- simplifying assumptions: \(M_2, \mu_u \rightarrow \infty \), only 2 neutralinos containing \(\tilde{B}, \tilde{H}_d \) contribute

\[
m_{\tilde{l}_2} = \frac{3}{2} m_{\tilde{l}}
\]

\[
m_{\tilde{l}} = \frac{3}{2} m_{\tilde{l}_2}
\]

\[
\mu_d = 100 \text{ GeV}
\]

maximal mixing

new MEG results

old MEG results