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* The Standard Model (SM)

* The Standard Model plus two singlets (SNI2S

* The twoHiggs-doublet model (2HDM)

* The twaHiggs-doubletmodel plus one singlé2HDM1S)
 SumMmary
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 Unitarity and boundedrom-below (BFB) conditions on the scalar potential on each
model (hese conditions are applied for the scalar doublets where only one of them has VEV

* Theexperimental bound on the oblique paramé&te0.04 <T < 0.2)

 The (approximate) bound ca§> 0.9ontheh, component of the scalar doublet with
nonzero VEVso thath, W"W coupling is within 10% of its SM value
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The Standard Modepredictsh, to be a scalar and predicts its cubic and quartic

couplingsg; andg, which we define throughL = - .. — ¢4 (11..1)3 — (}z_.1)4
The SM has only one scalar doublet The scalar potential is
by = G« v o+ 2 (o6,

)\1@'
2 BVG

Thesecond term indicates that the squared mass of the observed scalar is (M| = 2)\1@'2

)\1

o+ = gt

M 1 ’U2 M 1 ¢ M 1 M 1
Therefore V = — h? 713 /
LT T 1 g2
= o+ g3h} + gihi.
| M,y . | 2

Then couplings (3 = >/ = 31.7GeV, with My = (125GeV)

a v o= 174GeV

=1 = 0.0323.
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We consider the SM with the addition of two r&4(2) x U(1)-invariant scalar field§, andS,
Thescalar potentialis V' = V1, + V.
Vo = molér +m2s? +mis?,

. At /4 \2 Y e 4
Vi = 5 (elon) + 5 St S 5E+ vasiSh + 610 (6157 + &aSE).

Unitarity we follow closely the method of M. P. Bergbal [arXiv:0711.4022]

In order to derive thanitarity conditions one must writéhe scattering matricder pairs of one incoming state and
one outgoing state with the sai@gelectric charge) and, (third component of weak isospin)

Theunitarity conditions are following: the eigenvalues of all the scattering matrices should be smaller, in modulus,
than 4. Thus, in our case

6'&{-‘1 2@3 2{‘: 1

Al ‘ | I?"' . and the eigenvalues of 2thg 6o 2&

& < 27, || < m, 26 26 3\

should be smaller, in
modulus, than 4

BFB we follow the method of KKannike[arXiv:1205.3781]

N> 0, a=&+VAr > 0,
U > 0, ay =&+ VA > 0,
@.-‘2 > 0, gz = ‘!,f'f'g + 't.if"'l't.ﬁl"Q > 0,

AM1thg + &1y e + So/ U + UsV/ A1+ V2a1a0a3 > 0. 5/14




In theunitarity gauge, together with S1=wi+01 VEV of S, isw, and VEVof S, is w,

82 = Wy + 09

on obtains
A Uy )
V = —5 vt — o5 u.:i‘ - wg — 1) 3ur1 wQ v (Sluff + Ggwg) where
| H Arv? V260w,V 2& 0w,
—|—5 ( H a1 09 ) ﬂ[ a4 ﬂwf = 2 \/§$1U'H11 21,5’1'1”‘1? 2?;{-‘3'1{}1'1{,?2
- T9 \/552 VWoy 2L)3 Wty 2'{;{-‘2 u_rg
)\1?)
‘|—ﬁ H? + 2Ulw10'1 + QL'QWQUg
—|—£1H0'1 (\/E'UO'l —|— 'UJIH) —|— £2H0'2 (\/5?_;‘0'2 —|— 'IUQH)
+21p30109 (w09 + wgal)
A Uy &1 .
+ ~H'+ 5 1+7 2+ H?o ‘f+ H20§+¢!35r$a§_
Onediagonalize$he real symmetric matril as 3000F
. _ g Mas [GeV]
M = RT diag (My, Ms, M3) R 2500; ©>0
whereRis a 3 x 3 orthogonal matrix which may be = 2000¢ :2?830
parameterized as |§ 1500}
1000}
Ci S1C3 5153 = X
R = —S1Co (C1C9C3 + S283  (C1C253 — S9C3 500_}. . Ty
—S8159 (€189C3 — (983 (18983 + (C9C3 0_ - i ]
0.90 0.92 0.94 0.96 0.98 1.00



By collecting quantities in front dfi® andH* we get expressions for cubic and quartic couplings
MU , ,_
g3 = cf + 215,-'111.115?63 + 21‘;'.321025‘;’53

V2
+£1018105 (\/ﬁvslcg, + wlcl) + £50151 53 (\/E’-USng + wgcl)

.3
+21357¢383 (w183 + wacs)

M, . V20 3 3 V20 5 3
2v/20 w1 wao
A1 Uy (85 1 2 .
AT TR U O B DT IO T TR JEJE SR
8 2 2 2 2
0.5
* Qjis always below its SM value and positive
* g,isalmost always above i8M value and 0.4}
positive i
* ggremains in the same order of magnitude as in 0.3
SM S I
* g, may easily be 10 or even 15 times larger 0.2L
than in the SM :
0.1}
0.0k
20
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We consider the model with two scalar ga8i#(2) doubletsi, and(, having the same weak
hypercharge
Theterms of scalar potential is V, = ,L.g,lq'j{g;ﬁl + ,L.s,ggi»;gbz — (u.g,gb‘;qhg + Hc) :

A Ao

TN AN Py PRy
Vy, = 7(@1@*)1) +?(¢22®2) + A3 0101 9302 + Ay O102 D301

\ N2 U 4t
+ [ > (@) + Ao ln dln+ Ar ol6s 016z + Hf]

Unitarity  as for SM2S case we deriuaitarity conditions from scattering matrices for which eigenvalues should
have moduli smallethan 4. These conditions were first derived bykKanemuraand K.Yagyu
[arXiv:1509.06060]

In general, conditions do not have expressed form but for some individual

9_\

parameters, the bounds br .
47 47 N2 af !
Azl < = sl <= her| < ;
- . . g 0

BFB necessary and sufficient conditions for the scalar potential of the 2+~

to be BFB were first derived by NWaniatiset al [arXiv:1205.3781] . 3l

lvanov[arXiv:1507.05100]later produced other, equivalent condition:

the same effect. But full conditions exist onlyailgorithmic form -6/

Some necessary conditions can be expressed by inequalities - 7
A >0, >0 A3 > —vV A, A3+ N — || > =V A 9 6 3 0 3 6 9

A4
A+
] IS WA ks NS WIS W D W
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Now we have following mass matrix

which isdiagonalizedvith orthogonal 2\v? 2v% RAe —2v% 3\
matrix R like in SM2S case M = 202 RNg Mo + (Ay + RA5) v2 — 02 3N,
—2’1)2 %)\6 —I.-’Q %/\5 JIC + (A4 — %)\5) ?JQ

M = RT diag (My, My, Ms) R

The chargedHiggs squared mass is expressed\dy: = /15 + A30?

* if ¢, <0.99 then the masses of new scalars no « for smallM, mass difference may be as large as
larger than ~700 GeV 400 GeV
+ if ¢; <0.95then the masses of new scalars no « for both masses larger thaiTé&V mass
larger than-500GeV difference becomes smallgran100GeV
3000F T T T T T 400_‘...‘...‘...................‘
2500~ VM [GeV] :
7 ei=C ]
r eoi=2 i
= 20000 L7 i
Q i ]
" 1500[ .
1000+
500F
Oi\.\.l..'..l\..\.'\\\\\\lf :|‘..-.\...‘|....|....|....|...‘|:
0.90 0.92 0.94 0.96 0.98 1.00 0 500 1000 1500 2000 2500 3000

@ VMc [GeV]
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By collecting quantities in front dfi® andH* we get expressions for cubic and quartic couplings

v
g5 = —= [N+ (As+ M) sfer + ster (¢ — 53) RAs — 2s3ercass Qs

V2

—|—381C§ (Cg %)\6 — Sg3 %)\6) —I— S:i)' (C‘g ‘5}?,/\7 — 53 %A,?)] .

4 4 2.2 2.2 7.2 2 2.2 . Cx
Aer | Aest | (As+Ag) st | sieq (e —s3)RA; sfciegsy SA;

TR 1 1 2
81(’,? (C3 g’]?.)\ﬁ — S3 %)\5) S?Cl (Cg 5]?.)\7 — S3 %)\7)
2 2
0.20F T ' ' ]
| #090<¢ <092 ; .
T 0092<¢ <094 | - L
* Qgzandg,is broadly correlated with each other 0.15] ©094<¢; <096 : e e 1
* gz may be zero or even negative | ©096<c<098 | T
. g4 iS always positive . ®098< < 1.00 L - :: o gt : Taw

* gzmay be up to three times larger than in the SM; 0.10
* g, may be up to six times larger than in the SM

0.05]




We consider the 2HDM with the addition of one r8al(2) x U(1)-invariant scalar fielcs

: A N2 Aa /o, 0\
Thequartic part of scalar |, = _1(99‘;@1) —|——2(¢);q")g) + X3Pl by Do + Ay &l o DLy
potential is 2 \ 2

2
+ [7 (6102) + X 8l61 6}0n + Ar dloa oln + Hc]
U a
+Eb

i}

152 (51 @91@1 + & (D;OQ + &3 @J{OQ =+ ‘f; anl) '

BFB we wantV, to be positive for all possible values 52, oJ{ 01, g’)g(jjg: g}J{gf)g
sufficient conditions: necessary conditions: ¢ld, = ¢l = dloy = 0 =—=> ¢ ,
/\1 )
S+& > 0, 52 = () ——> all 2HDM cond. and

Ao

Ar=&+V

Py=0 —=—=> Ay=&E+ Vot
1435)~3+\/m

VAt + &V + GV + AV + V241 A5 Ay

If parameter set satisfy necessary conditions but does not meet sufficient conditions, we try to find absolute
minimum ofV,. If this minimum is positive, then the set of input parameters is good. 11/14
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Unitarity there are same five scattering channels as in the 2HDM but one channel has additional scatt&fing statc
For 2HDMLS all five scattering matrices must have moduli of eigenvalues sthalted .

Now we have following mass matrix:

2N 02 202 R\g —202 I)\g 2v/2uwé;
\ — 202 RNg Mo + (A + RN v? -2 3\, 21/ 20w REy
) —202 3 g — 023Ny Me 4+ (M — RA5) 0?2 —2/20w §¢;
2v/2uwé; 220w RE, —2v2vw I, Aapan?

Onediagonalizeshe real symmetric matrid as

M = R"diag (M, My, M3, My) R Without lost of generality
whereRis a 4 x 4 orthogonal matrix and we requfi?;; = ¢; > 0.9 My < My < My

—100

o
Mc-+/Ms [GeV]

1-200

_ 1=300
0 500 1000 1500 2000 2500 30000 500 1000 1500 2000 2500 3000
VM [GeV] VI [GeV] 12714




For 2HDML1S case we get quite large expressions for cubic and quartic couplings

gs = g3 [)\h ceey Az, 1, 0y, '92; 935 Ryy. ... ;R14§ v, w ]

Gs = Ga[A1s .o A, 0,01, 05,03 Ry,

)

wherev = 174 GeV andv computed from the condition thi; = (125 GeV3} should be an eigenvalue of the

matrix M

* (Qgzandg,is broadly correlated with each other
* gz may be zero or even negative

* g,Isalways positive

* gzmay be up to 30 times larger than in the SM
* g, may be up to 15 times larger than in the SM

* central direction in distribution of couplings is
affected through 2HDM part in the potentigl

« other directions emerge due to influence of
additional scalar

0'5 j| T : T T T .I T T T ]
I .:' ‘: - y ::-. : . “.O'
04f .. ¢ we ]
i . 2o
i .";.' 3
0.3F & Al ]
SO R 1
© © 9090505092 |
02r .= 2092<¢ <094
"k ©094<¢ <096 |
0.1k ©096<c; <098 |
’ ‘ ®098<c=<1.00 :
0.0 C1 " " " .I " 1 " " 1 " " 1 " " 1 " " 17
=200 0 200 400 600 800 1000
g3 [GeV]
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2HDM1S:—6.5 < g3 /g™ < 30 and 0 < g4 /g5 < 15

BFB andUnitarity conditions for 2HDM are

SM2S:0.6 < g3 /g5M < land 1 < g4 /5™ < 15

2HDM: —0.5 < g3 /g™ < 3 and 0 < g4 /g™ < 6

invariant under a change of the basis used for

the twodoublets.

There are large variations among the couplin

in three extensions of the SM.

Our results are comparable with results with
other studies like SM Effective Theory
development, contribution @f; to Oblique
parameters, partiavaveunitarity of 2h, decay
or models of sensitivities for future colliders.

The method may be used to obtain bounds
and/or correlations among other parameters ~10
and/or observables tiiese threenodels.
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