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* The Standard Model (SM)

 The Standard Model plus two singlets (SM2S)

* The two-Higgs-doublet model (2HDM)

* The two-Higgs-doublet model plus one singlet (2HDML1YS)
e Summary
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« Unitarity and bounded-from-below (BFB) conditions on the scalar potential on each
model (These conditions are applied for the scalar doublets where only one of them has VEV)

 The experimental bound on the oblique parameter T (-0.04 < T < 0.2)

* The (approximate) bound cos(d) > 0.9 on the h, component of the scalar doublet with
nonzero VEV so that h,W*W- coupling is within 10% of its SM value

3/14



The Standard Model predicts h, to be a scalar and predicts its cubic and quartic

couplings g5 and g, which we define through L = ... — ¢4 (h..l)?’ — (}z..1)4
The SM has only one scalar doublet The scalar potential is
by = G« v o+ 2 (o6,

)\1@'
2 V2

The second term indicates that the squared mass of the observed scalar is given by M| = 2)\1@'2

)\1

o+ = gt

M 1 ’U2 M 1 ¢ M 1 M 1
Therefore V = — L2 713 /
LT T 1 g2
= o+ g3h} + gihi.
. M, . | 2

Then couplings g3 = >/ = 31.7GeV, with M, = (125GeV)

a v o= 174GeV

=1 = 0.0323.
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We consider the SM with the addition of two real SU(2) x U(1)-invariant scalar fields S, and S,
The scalar potentialis V' = V5, + V.
Vo = molér +m2s? +mis?,

. At /4 \2 Y e 4
Vi = 5 (elon) + 5 St S 5E+ vasiSh + 610 (6157 + &aSE).

Unitarity  we follow closely the method of M. P. Bento et al. [arXiv:0711.4022]

In order to derive the unitarity conditions one must write the scattering matrices for pairs of one incoming state and
one outgoing state with the same Q (electric charge) and T, (third component of weak isospin)

The unitarity conditions are following: the eigenvalues of all the scattering matrices should be smaller, in modulus,
than 4z. Thus, in our case

6'&{-‘1 2@3 2{‘: 1

ol ‘ | I?"' . and the eigenvalues of 20 Oy 289

&l < 27 s < o 2, 26 3\

should be smaller, in
modulus, than 4x.

BFB we follow the method of K. Kannike [arXiv:1205.3781]

N> 0, a=&+VAr > 0,
U > 0, ay =&+ VA > 0,
@.-‘2 > 0, gz = ‘!,f'f'g + 't.if"'l't.ﬁl"Q > 0,

AM1thg + &1y e + So/ U + UsV/ A1+ V2a1a0a3 > 0. 5/14




In the unitarity gauge, together with

81 = wy + 01

82 = Wy + 09

VEV of S, isw, and VEV of S, is w,

on obtains
A W )
V = —?1 vt — ?1 wi — % wy — Yywiws — v* (§ui + Lws) where
1 H 02 V26 0wy
—|—5 ( H o, o ) M| o M =2 V2&4vw; 2w?
- T9 \/55213?_{.12 2'{;';'3’11]111]2
)\1?)

+—= H? + 2rwi07 4 2sws0;

\/E
+& Hoy (\/ﬁval + w1H) + & Hos (\/5?_.}(72 + wQH)

1+ 21h30109 (wlag + wgal)

\/5521”11-’2

20p3wq w5

) 2
2?;’/-21[_12

/\ f 5
4 1 2 2 2 2 [ 2 2
One diagonalizes the real symmetric matrix M as 3000F
, T 1ioor (N ) ) g Mo [GeV]
M = R diag (My, My, M3) R 2500; ©>0
. . : : > 500
where R is a 3 x 3 orthogonal matrix which may be g 2000;‘ o= 1000
parameterized as = 1500%
Ig :
1000}
C1 S1C3 5153 [
R = | —si1ca c10o03 + 59283 1253 — 5203 500_}.
—S1S82 (1S59C3 — (953 (15953 + C2C3 i




By collecting quantities in front of H® and H* we get expressions for cubic and quartic couplings

A

- 3 ) 3 3 3.3
g3 = €] + 201wy s7¢5 + 2h9w957 S5

V2

+£1018105 (\/ﬁvslcg, + wlcl) + £50151 53 (\/E’-USng + wgcl)

.3
+21357¢383 (w183 + wacs)

2v/20 w1 wao
A1 Uy (85 &1 §2 .
gy = — c‘ll + — S‘llcg + — 5‘1153 + — cfsfcg + — cfs?sg + 3 s%cgsg
8 2 2 2 2
0.5
* Q;is always below its SM value and positive
* g, Iis almost always above its SM value and 0.4}
positive i
* 0 remains in the same order of magnitude as in 0.3
SM S I

* g, may easily be 10 or even 15 times larger
than in the SM

0.2}

0.1}

0.0k
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We consider the model with two scalar gauge-SU(2) doublets ¢, and ¢, having the same weak
hypercharge

The terms of scalar potential is 1, = ,L.s,lq'f{q'bl - ,L.s,ggi»;gbz + (u.g,gb‘;qhg + Hc) :

N VT S
Vy = %(Q];Ol) +§(@$®2) + A3 ¢l b1 Dl + Ay Dl o Dl

\ N2 U 4t
+ [ > (@) + Ao ln dln+ Ar ol6s 016z + Hf]

Unitarity  as for SM2S case we derive unitarity conditions from scattering matrices for which eigenvalues should
have moduli smaller than 4z. These conditions were first derived by S. Kanemura and K. Yagyu
[arXiv:1509.06060]

gr
In general, conditions do not have expressed form but for some individual
parameters, the bounds br .
47 47 N2 gl \

Azl < = sl <= her| < ;
BFB necessary and sufficient conditions for the scalar potential of the 2HDM ™

to be BFB were first derived by M. Maniatis et al. [arXiv:1205.3781]. . 3l

Ivanov [arXiv:1507.05100] later produced other, equivalent conditions to

the same effect. But full conditions exist only in algorithmic form. -6
Some necessary conditions can be expressed by inequalities . -
A1 = U.J )\2 >0 )\3 = =/ /\1/\2, /\3 + A4 — |/\5| Y )\1)\2 2 6 3 0 3 6 9

A1+ Ao

—

2N + A7] < + A3+ Mg+ | As5].
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Now we have following mass matrix

which is diagonalized with orthogonal 2\v? 20% R —2v% 3\
matrix R like in SM2S case M = 202 RNg Mo + (Ay + RA5) v2 — 02 3N,
—2’1)2 %)\6 —I.-’Q %/\5 JIC + (A4 — %)\5) ?JQ

M = RT diag (My, My, Ms) R

The charged-Higgs squared mass is expressed by Me = 15 + Agv?

« if ¢; <0.99 then the masses of new scalars no « for small M, mass difference may be as large as
larger than ~700 GeV 400 GeV
+ ifc; <0.95 then the masses of new scalars no for both masses larger than 1 TeV mass
larger than ~500 GeV difference becomes smaller than 100 GeV
3000F T T T T T 400_‘...‘...‘...................‘
2500~ N Mi[GeVl :
7 ei=C ]
r eoi=2 i
= 20000 L7 i
Q i ]
" 1500[ .
1000+ ]
500F |
Oi\.\.l..'..l\..\.'\\\\\\lg Lo e ]
0.90 0.92 0.94 0.96 0.98 1.00 0 500 1000 1500 2000 2500 3000

@ VMc [GeV]
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By collecting quantities in front of H® and H* we get expressions for cubic and quartic couplings

v

g3 = —— [Alc? 4+ (Mg + M) s7¢p + 53¢, (c

V2

g — Sg) %)\5 — 28%016383 %)\5

—|—381C§ (Cg %)\6 — Sg3 %)\6) —I— S:i)' (C‘g ‘5}?,/\7 — 53 %A,?)] .

1 1 2.2 2
et | Aast | (Ag+ Ag)eisi | st

2.2 .2 2.2, o Oy
(3 — s3) WA 51610393 SAs

8 8 !

4

2

81(’,? (C3 g’]?.)\ﬁ — S3 %)\5) S?Cl (Cg 5]?.)\7 — S3 %)\7)

2

* gzand g, is broadly correlated with each other
* g3 may be zero or even negative
* g, isalways positive

* gz may be up to three times larger than inthe SM 5 0.10

* g, may be up to six times larger than in the SM

2

0.20F

0.15

0.05]

2090<¢ <092
0092<=09
©094<¢ =096
®096<¢ =098
0098<¢=1.00




We consider the 2HDM with the addition of one real SU(2) x U(1)-invariant scalar field S

: A N2 Aa /o, 0\
The quartic part of scalar Vv, = L (991;01) —|——2(¢);q")g) + X3Pl by Do + Ay &l o DLy
potential is 2 \ 2

2
+ [7 (6102) + X 8l61 6}0n + Ar dloa oln + Hc]
U s
+Eb

i}

152 (51 @9101 + & (D;OQ + &3 @J{OQ + ‘f; anl) '

BFB we want V, to be positive for all possible values of 52, oJ{ 01, g’)g(jjg: g}J{gf)g
sufficient conditions: necessary conditions:  &ld; = dlds = dloy =0 =—=> ,
/\1 )
S+& > 0, 52 = () ——> all 2HDM cond. and

A2

Ar=&+V

Moa=0 == Ay=&+ V)
143E)~3+\/m

VAt + VAL + &V + AU+ V241 Ap Ay

If parameter set satisfy necessary conditions but does not meet sufficient conditions, we try to find absolute
minimum of V,. If this minimum is positive, then the set of input parameters is good.

.

5152—\f3|2 > 0,

.

.

vV vV V. V. V V V
S O O O O o O
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Unitarity there are same five scattering channels as in the 2HDM but one channel has additional scattering state S2.
For 2HDM1S all five scattering matrices must have moduli of eigenvalues smaller than 4z.

Now we have following mass matrix:

2N 02 202 R\g —202 I)\g 2v/2uwé;
\ — 202 RNg Mo + (A + RN v? -2 3\, 21/ 20w REy
T —2023 ) — 023Ny Me 4+ (M — RA5) 0?2 —2/20w §¢;
2v/2uwé; 220w RE, —2v2vw I, Aapan?
One diagonalizes the real symmetric matrix M as
M = R"diag (M, My, M3, My) R Without lost of generality
where R is a 4 x 4 orthogonal matrix and we require 21; = ¢; > 0.9 My < My < My
2500¢ - . . . . — . . . . —300
: ' ' 1200
g 2{]0(]E =
= 1500} jo 8
: 0
E o 5
5 : ~100 | |
= 500; —200 S
O : =300

0 500 1000 1500 2000 2500 30000 500 1000 1500 2000 2500 3000
VI [GeV] VI [GeV] 12/14



For 2HDMLS case we get quite large expressions for cubic and quartic couplings

gs = g3 [)\h ceey Az, 1, 0y, '92; 935 Ryy. ... ;R14§ v, w ]
Ga =G [Ay .o A, 10, 01,05,05 Ryq, .o Ry |

)

where v =174 GeV and w computed from the condition that M, = (125 GeV)? should be an eigenvalue of the

matrix M
« gsand g, is broadly correlated with each other 05— T T T T 7
g, may be zero or even negative ! e E et
* g, is always positive 04 . ¢ s 2]
* g3 may be up to 30 times larger than in the SM F.
. . o A T
* g, may be up to 15 times larger than in the SM 03f - 3 i
< s ]
© k- 9090<¢ <092 |
02r . -\ C 9092<¢,<094 T
- central direction in distribution of couplings is S :83;: ? ig‘gg ]
affected through 2HDM part in the potential V, 0.Ir  .-. ©098<0<1.00
» other directions emerge due to influence of L. N
additional scalar 0.0L i

400 600 800 1000

o [GeV]

200 0 200
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SM2S: 0.6 < g3 /g5M < land 1 < g4 /5™ < 15

2HDM: —0.5 < g3 /g™ < 3 and 0 < g4 /g™ < 6

2HDM1S: —6.5 < g3 /g™ < 30 and 0 < g4 /5™ < 15

BFB and Unitarity conditions for 2HDM are
invariant under a change of the basis used for
the two doublets.

There are large variations among the couplings
In three extensions of the SM.

Our results are comparable with results with
other studies like SM Effective Theory
development, contribution of g, to Oblique
parameters, partial-wave unitarity of 2h, decay
or models of sensitivities for future colliders.

The method may be used to obtain bounds
and/or correlations among other parameters
and/or observables of these three models.

galgiM

® SM2S )l
® 2HDM ]
® 2HDM1S
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Thank You...



