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Portal models of dark matter — the teams



Dark matter experimental evidence

We all know the evidence for dark matter (DM) in gravitational
interactions, e.g.

(I) Rotation curves [2] (II) CMB [3]
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WIMPmiracle

Once it is cold enough, DM particles cannot overcome Hubble
expansion and thus cannot annihilate.

This freeze-out of thermal equilibrium with bath of Standard
Model (SM) particles sets relic density. This is the WIMP
miracle — as correct density achieved for weak interactions [4]
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Simplest theories of DM

We construct the simplest WIMP models of DM by adding a
single particle to the SM: the WIMP itself.

The WIMP interacts with SM by a Z or Higgs portal:

DM

DM

Higgs or Z
boson

We consider all dimension ≤ 4, Lorentz invariant interactions
for WIMPs with spin-0, 1/2 and 1.
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SM portal models

There are many models

(scalar, Majorana fermion, Dirac fermion, vector) spin of WIMP
× (Higgs, Z) mediator

We added them all to the DM program microMEGAs [5, 6] via
the model building program calcHEP [7].
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WIMP searches and constraints



DM annihilates to SM

DM must annihilate in the early Universe to set the relic
density measured by Planck.

DM

DM SM

SM

DM annihilation
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Relic abundance

From measurements of the CMB Planck [3] found

Ωh2 = 0.1199± 0.0022

in ΛCDM. The WIMP in our model must make up all of DM, not
just a fraction of it. We use a Gaussian likelihood with a 10%
theoretical uncertainty.
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Indirect detection

DM annihilation could result in signals from high
mass-to-light galaxies such as dwarf spheroidal galaxies.
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Fermi-LAT [8] searched for a γ-ray signal but saw nothing,
resulting in upper limits on ⟨σv⟩|v→0. We included
astrophysical uncertainty in a J-factor.
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DM scatters with SM

We can search for DM in direct detection experiments. DM
elastic scatters with nucleons in a detector on Earth.

DM

DM SM

SM
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There is a wind of WIMP particles from the Earth’s motion in
the dark matter halo.
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Direct detection

The Panda [9], LUX [10], XENON [11] and PICO [12] experiments
saw nothing, resulting in exclusion contours on the (mass,
cross section) planes

Our likelihood function for this data was a step-function. We
included uncertainty in nuclear form factors and the local
density of dark matter.
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Direct detection
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We also consider projected limits and limits down to the
neutrino floor.
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SM annihilates to DM

We can search for DM produced from collisions of SM particles.

DM

DM SM

SM

Collider production
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Collider searchers

The LHC [13] saw nothing — wanted to find missing energy as
DM escapes from the detector.

We interpreted monojet and monophoton searches for DM at
the LHC via CheckMATE-2 [14–19].
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Something + MET

The monojet searches (solid lines) were marginally stronger.
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Invisible widths

We made sure that constraints on the Higgs invisible
branching ratio from the LHC

BRinvh ≲ 24%

and Z width from LEP were satisfied.
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Data

Ωh2 0.1199± 0.0022± 10% Planck [3]

ΓinvZ 499.0± 1.5± 0.014MeV LEP [20]
BRinvh ≲ 0.24 LHC [21]

σ
p,n
SI ≲ 10−46cm2 PandaX [9]

σn
SD ≲ 10−40cm2 PandaX [22]

σ
p
SD ≲ 10−40cm2 PICO [10]
⟨σv⟩ ≲ 10−26cm3/s Fermi-LAT [8]

Mono-X searches
√

s = 8 TeV and 13 TeV LHC [13]
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Waning of the WIMP?

In light of the failure to discover DM in direct detection
experiments, many doubting the plausibility of WIMP DM.

WIMP DM models can be fine-tuned to agree with data but
was their plausibility damaged?
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Portal DMWorld Cup

Let’s check the impact on Higgs and Z portal models —
confront all models with data.

DMWORLD CUP

ICHEP 2018

There are 10 models. Which one will be the champion?
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Statistical methodology — the format of the

competition



Methodology

We have models and data. We need a statistical methodology
to judge the models in light of the data.

Our approach is two-pronged: Bayesian and frequentist.

We calulate p-values and Bayes factors — the change in
relative plausibilty of models in light of experimental data.
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Priors for DMmass and couplings

We picked logarithmic priors for DM mass and coupling, since
we are ignorant of their scale.

DM mass, mχ 1 GeV – 10 TeV Log
DM coupling with SM, g 10−6 – 4π Log
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Results of the portal DMWorld Cup



Current data

First let’s consider the impact of all current data.

For the Bayes factor, we consider the change in plausibility
relative to Majorana Z-portal, which had the highest evidence.
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Current data

Model Bayes factor min χ2 p-value

Real scalar h-portal 0.55 2.6 0.27
Complex scalar h-portal 0.28 2.6 0.27
Real vector h-portal 0.23 2.6 0.27
Complex vector h-portal 0.059 2.6 0.27
Majorana h-portal 0.59 2.6 0.27
Dirac h-portal 0.71 2.6 0.27

Scalar Z-portal 3× 10−14 55 1.4× 10−12
Vector Z-portal 6.8× 10−10 35 2.2× 10−8
Majorana Z-portal 1 2.6 0.27
Dirac Z-portal 0.24 2.6 0.27
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Twomodels excluded

A lot of information. Most models just fine. No clear winner!

The vector Z and scalar Z portal models predicted substantial
scattering cross sections. They were excluded by direct
detection experiments.

The results of the Bayesian and frequentist analysis are
consistent.
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Damage to simple DMmodels

Perhaps the failed searches for DM in direct detection
experiments damaged plausibility of all portal models?

The Bayes factors shown the change in relative plausibility
amongst the portal models.

Let’s compare against an hypothetical model that predicts no
signature in DD experiments with current and future DD limits.

Andrew Fowlie. ICHEP 2018 24/25



Damage to simple DMmodels

Damage to plausibility from DD

Model Present Future Neutrino floor

Real scalar h-portal 0.3 0.006 5× 10−5
Complex scalar h-portal 0.1 0.002 1× 10−5
Real vector h-portal 0.1 0.0009 9× 10−7
Complex vector h-portal 0.02 0.001 6× 10−10
Majorana h-portal 0.2 0.2 0.1
Dirac h-portal 0.2 0.1 0.1

Scalar Z-portal 1× 10−14 7× 10−73 7× 10−129
Vector Z-portal 3× 10−10 7× 10−54 2× 10−101
Majorana Z-portal 0.3 0.2 0.1
Dirac Z-portal 0.08 0.04 0.01
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Damage to simple DMmodels

Direct detection experiments did not greatly damage the
plausibility of many of the simplest models!

Hypothetical future results from LZ, XENONnT, and PICO might
begin to damage a few models.

But fermionic models survive even once limits on the
spin-independent cross section reach the neutrino floor!
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Damage to simple DMmodels

The story from the change in χ2 is similar, though
disagreement about change in status of e.g., scalar DM
interacting through Higgs portal.
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Damage to simple DMmodels

∆χ2

Model Present Future Neutrino floor

Real scalar h-portal 0 0 0.87
Complex scalar h-portal 0 0 2.4
Real vector h-portal 0 0 8.5
Complex vector h-portal 0 0 14
Majorana h-portal 0 0 0
Dirac h-portal 0 0 0

Scalar Z-portal 52 3.2× 102 5.7× 102
Vector Z-portal 33 2.3× 102 4.5× 102
Majorana Z-portal 0 0 0
Dirac Z-portal 0 0 0
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Conclusions

• We constructed many simple models of WIMP DM that
interact with the SM through the Higgs or Z boson

• We carefully considered all relevant experimental data
and uncertainties

• We analyzed the models with Bayesian and frequentist
statistics

• No clear winner to the DM world cup, but many
contenders

• Lmited support for claims that WIMP DM is under
pressure — a few models knocked out/implausible, but
there is a long way to go in DD searches

• Waning of the WIMP is premature
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