SEARCH FOR HIGH-MASS DIMUON RESONANCES USING PROTON-PROTON COLLISIONS AT $\sqrt{s} = 13$ TEV WITH THE ATLAS DETECTOR

S. Rettie1,2, on behalf of the ATLAS Collaboration

1The University of British Columbia, TRIUMF

Motivation

Z Prime (Z')
- Additional spin-1 neutral gauge boson
- Benchmark signal is Sequential Standard Model (SSM) Z', additional heavy boson with same fermion couplings as SM Z.
- Predicted by GUT models based on the E_6 gauge group.
- Two additional $U(1)$ gauge fields $Z'(\phi) \rightarrow Z'(\phi_0) + Z(\phi_0) + 2\phi_0$.
- Observable as narrow resonances in dimuon invariant mass spectrum.

The ATLAS Detector

- **Muon Spectrometer (MS):**
 - Barrel region: $|\eta| < 1.1$.
 - Endcap region: $1.1 < |\eta| < 2.7$.
- Toroidal magnetic field allows for transverse momentum (p_T) measurements by measuring the curvature of the muon tracks.
- p_T resolution up to 10% for muons with $p_T \sim 1$ TeV.
- Inner Detector (ID):
 - Contains in a 2T magnetic field.
 - Used for the tracking of charged particles.
- ID track combined with MS track to form "combined" muon.

Backgrounds

- **Drell-Yan Production**
 - Generator: Powheg Box
 - Shower: PyNLO 8.10B
 - PDF: CT10

- **Top Production**
 - Generator: Powheg Box
 - Shower: PyNLO 8.10B
 - PDF: CT10

- **Diboson Production**
 - Generator: Sherpa 2.1.1
 - Shower: Sherpa 2.1.1
 - PDF: CT10

- **Event Level Criteria**
 - Good Run List (GRL)
 - Single-muon trigger: 1 isolated μ with $p_T > 26$ GeV OR 1 μ with $p_T > 50$ GeV.
 - At least 2 combined muons.
 - Require Opposite Charge.
 - Select highest p_T pair: $m_{\mu\mu} > 80$ GeV.

Event Selection

- **Muon Selection**
 - High-p_T muon working point improves momentum resolution at high p_T.
- Require track origin to be consistent with primary vertex:
 - d_0 significance < 3.
 - $|z_0 \sin\theta| < 0.5$ mm.
 - Loose isolation on tracks.

- **Exclusion Limits**
 - No significant deviation from the Standard Model prediction was observed, so various theoretical models are constrained by setting limits on their parameters, e.g. the Z' boson masses or the contact interaction binding energy scale Λ.

- **Highest $m_{\mu\mu}$ Event (1.99 TeV)**

Data/MC Comparisons

- **Leading μ (p_T, η, ϕ):** (637 GeV, -0.43, -2.16)
- Subleading μ (p_T, η, ϕ): (546 GeV, 1.81, 0.90)
- Missing E_T: 109 GeV

Reference: JHEP 10 (2017) 182