Search for four-top-quark production at $\sqrt{s} = 13$ TeV with the ATLAS detector at the LHC

Leonid Serkin
INFN Gruppo Collegato di Udine and ICTP Trieste, Italy

1. Introduction

- **LHC**: unique window to search for rare SM signatures
 - Extremely rare process: SM tttt cross-section ≈ 9.2 fb (NLO in QCD), but powerful probe for many signatures of BSM physics;
 - Current limits: obs (exp) 95% CL of 4.5 (2.3) times SM expectation [1];
 - Can be studied in a variety of final states/channels, topology given by the decays of each W-boson ($t \rightarrow Wb$);

- 2 new searches [2, 3] for SM four-top-quark production using 36.1 fb$^{-1}$ of pp data at $\sqrt{s} = 13$ TeV collected by the ATLAS detector during 2015 and 2016;
 - Main focus here on the search using final states with the largest branching fraction (single-lepton and opposite-sign dilepton), and its combination with the search using same-sign (SS) dilepton and trilepton events.

- Final states with a single electron or muon, or dilepton events with 2 opposite-sign charged electrons or muons: small signal on top of large background dominated by production of $tt +$ extra jets;
 - Exploit the high jet (b), b-tagged jet (b) and reclustered large-R jet (ℓ) multiplicities, and the high scalar sum of the jet transverse momenta (HT_{vis});
 - Events in each of the 2 channels are classified according to their event topology: highest sensitivity categories in single-lepton (OS dilepton) channel require at least 10 (8) jets, 4-b-tagged jets and 2 (1) reclustered jets.

3. Data-driven tt+jets estimation

- Inclusive tt MC simulation at NLO in QCD is not expected to model the very high jet/b-tagged regions well, relies on the description through parton showers with consequently large uncertainties;
 - Developed a data-driven method to estimate the dominant tt+jets background: assumes that the probability of b-tagging a jet in tt+jets event is essentially independent of the number of additional jets;
 - Tag-rate-function (TRF) formalism: for a given event with N_j jets, the probability P of containing exactly one b-tagged jet can be calculated as:
 $$ P(N_b=1) = \frac{N!}{N_b!(N-N_b)!} \cdot (1 - \varepsilon)^{N-N_b} \cdot \varepsilon^{N_b} $$
 where the b-tagging efficiencies (ε) are extracted as a function of jet p_T and the minAR for the given jet w.r.t. to all other jets, multiplied by N_j;
 - Extract effective b-tagging efficiencies from low N_j data (efficiency extraction regions), reweight (via tag-rate-function (TRF) formalism) the data in $N_b=2$ regions (source regions) and predict tt+jets in signal regions with same N_j/N_b, but larger Nb:

- All steps applied to MC simulated tt+jets events: derive a correction factor C for each considered bin, reweighting the prediction by less than 20%;
 - A full set of systematic uncertainties is derived by repeating the procedure on MC simulated events with systematic variations applied.

4. Results and combination

- In the single lep. + OS dilepton channel, a simultaneous fit is performed to the HT_{vis} distributions in 20 signal regions, data-driven estimation of tt+jets;
 - SS dilep. / trilep. cut-and-count analysis [3] in several regions, with data-driven estimations of non-prompt lepton and mis-identified charged leptons:
 - Results in both channels combined: excess of events over the SM background prediction observed with a significance of 2.8σ (1.0σ), Excess driven by the SS dilep. / trilep channel; compatibility between two channels quantified to be 31%;
 - Assuming no signal, obs. (exp.) 95% CL upper limit of 5.3 (2.1) times SM expectation.

References