## Search for four-top-quark production at $\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$ with the ATLAS detector at the LHC

Leonid Serkin<br>INFN Gruppo Collegato di Udine and ICTP Trieste, Italy

## Na) ISMXUIVACUK

## 1. Introduction

- LHC: unique window to search for rare SM signatures

Extremely rare process: $\mathrm{SM} \mathrm{tt}_{\mathrm{t}}^{\mathrm{t}}$ cross-section $\approx 9.2 \mathrm{fb}$ (NLO in QCD), but powerful probe for many signatures of BSM physics;
Current limits: obs (exp) $95 \%$ CL of 4.5 (2.3) times SM expectation [1];
Can be studied in a variety of final states/channels, topology given by the decays of each W-boson $(\mathrm{t} \rightarrow \mathrm{Wb})$;


2 new searches [2,3] for SM four-top-quark production using $36.1 \mathrm{fb}^{-1}$ of pp data at $\sqrt{s}=13 \mathrm{TeV}$ collected by the ATLAS detector during 2015 and 2016;
Main focus here on the search using final states with the largest branching fraction (single-lepton and opposite-sign dilepton), and its combination with the search using same-sign (SS) dilepton and trilepton events.

## 3. Data-driven $\mathrm{tt}+\mathrm{jets}$ estimation

Inclusive tt MC simulation at NLO in QCD is not expected to model the very high jet/b-tagged regions well, relies on the description through parton showers with consequently large uncertainties;
Developed a data-driven method to estimate the dominant tt+jets backround: assumes that the probability of b-tagging a jet in $\mathrm{tt}+\mathrm{jets}$ event is essentially independent of the number of additional jets;
Tag-rate-function (TRF) formalism: for a given event with Nj jets, the probability P of containing exactly one b-tagged jet can be calculated as: $P\left(N_{b}=1\right)=\sum_{i=1}^{N_{j}}\left(\varepsilon_{i} \prod_{j \neq i}\left(1-\varepsilon_{j}\right)\right)$
where the b-tagging efficiencies $\left(\varepsilon_{\mathrm{j}}\right)$ are extracted as a function of jet $\mathrm{p}_{\mathrm{T}}$ and the $\min \Delta \mathrm{R}$ for the given jet wrt. to all other jets, multiplied by Nj ;


Extract effective b-tagging efficiencies from low Nj data ('efficiency extraction' regions), reweight (via tag-rate-function (TRF) formalism) the data in $\mathrm{Nb}=2$ regions ('source regions') and predict tt+jets in signal regions with same $\mathrm{Nj} / \mathrm{NJ}$, but larger Nb :


All steps applied to MC simulated $t t+$ jets events: derive a correction factor C for each considered bin, reweighting the prediction by less than $20 \%$;
A full set of systematic uncertainties is derived by repeating the procedure on MC simulated events with systematic variations applied.

## 2. Single lep. + OS dilep. search [2]

- Final states with a single electron or muon, or dilepton events with 2 opposite-sign charged electrons or muons: small signal on top of large background dominated by production of $\mathrm{tt}+$ extra jets;
Exploit the high jet (j), b-tagged jet (b) and reclustered large-R jet (J) multiplicities, and the high scalar sum of the jet transverse momenta $\left(\mathrm{HT}_{\text {had }}\right)$ :


Events in each of the 2 channels are classified according to their event topology: highest sensitivity categories in single-lepton (OS dilepton) channel requiere at least 10 (8) jets, 4 b-tagged jets and 2 (1) reclustered jets:


## 4. Results and combination

- In the single lep. + OS dilep. channel, a simultaneous fit is performed to the $\mathrm{HT}_{\text {had }}$ disctributions in 20 signal regions, data-driven estimation of $\mathrm{tt}+\mathrm{jets}$;


SS dilep. / trilep. cut-and-count analysis [3] in several regions, with datadriven estimations of non-prompt lepton and mis-identified charged leptons:


Results in both channels combined: excess of events over the SM background prediction observed with a significance of $2.8 \sigma$ ( $1.0 \sigma$ ). Excess driven by the SS dilep. / trilep channel; compatibility between two channels quantified to be $31 \%$;

- Assuming no signal, obs. (exp.) $95 \%$ CL upper limit of 5.3 (2.1) times SM expectation.


References
[1] CMS Collaboration, Search for standard model production of four top quarks with same-sign and multilepton final states in proton-proton collisions at $\sqrt{V}_{s}=13$ TeV, Eur. Phys. J. C 78 (2018) 140
$[2]$ ATLAS Collaboration, Search for four-top-quark production in the single-leptor
states in pp collisions at $\sqrt{S}_{S}=13 \mathrm{TeV}$ with the ATLAS detector, to be published states in pp colilisions at $\mathrm{V}_{\mathrm{s}}=13 \mathrm{TeV}$ with the ATLAS detector, to be published

