Search for four-top-quark production at $\sqrt{s} = 13$ TeV with the ATLAS detector at the LHC

Leonid Serkin

INFN Gruppo Collegato di Udine and ICTP Trieste, Italy

1. Introduction

• LHC: unique window to search for rare SM signatures

- Extremely rare process: SM tttt cross-section ≈ 9.2 fb (NLO in QCD), but powerful probe for many signatures of BSM physics;
- Current limits: obs (exp) 95% CL of 4.5 (2.3) times SM expectation [1];
- Can be studied in a variety of final states/channels, topology given by the decays of each W-boson (t \rightarrow Wb);

- <u>2 new searches</u> [2, 3] for SM four-top-quark production using 36.1 fb⁻¹ of pp data at \sqrt{s} =13 TeV collected by the ATLAS detector during 2015 and 2016;
- Main focus here on the search using final states with the largest branching fraction (single-lepton and opposite-sign dilepton), and its combination with the search using same-sign (SS) dilepton and trilepton events.

3. Data-driven tt+jets estimation

- Inclusive **tt MC** simulation at NLO in QCD **is not expected to model** the very high jet/b-tagged regions well, relies on the description through parton showers with consequently large uncertainties;
- Developed a data-driven method to estimate the dominant tt+jets backround: assumes that the probability of b-tagging a jet in tt+jets event is essentially independent of the number of additional jets;
- Tag-rate-function (TRF) formalism: for a given event with Nj jets, the

probability P of containing exactly one b-tagged jet can be calculated as:

$$P(N_b = 1) = \sum_{i=1}^{N_j} \left(\varepsilon_i \prod_{j \neq i} (1 - \varepsilon_j) \right)$$

where the b-tagging efficiencies (ϵ_j) are extracted as a function of jet p_T and the min ΔR for the given jet wrt. to all other jets, multiplied by Nj;

• Extract effective b-tagging efficiencies from low Nj data ('efficiency extraction' regions), reweight (via tag-rate-function (TRF) formalism) the data in Nb=2 regions ('source regions') and predict tt+jets in signal regions with same Nj/NJ, but larger Nb:

- All steps applied to MC simulated tt+jets events: **derive a correction factor** C for each considered bin, reweighting the prediction by less than 20%;
- A **full set of systematic uncertainties** is derived by repeating the procedure on MC simulated events with systematic variations applied.

2. Single lep. + OS dilep. search [2]

- Final states with a single electron or muon, or dilepton events with 2 opposite-sign charged electrons or muons: small signal on top of large background dominated by production of tt+ extra jets;
- Exploit the high jet (j), b-tagged jet (b) and reclustered large-R jet (J) multiplicities, and the high scalar sum of the jet transverse momenta (HT_{had}):

• Events in each of the 2 channels are **classified** according to their event topology: highest sensitivity categories in single-lepton (OS dilepton) channel requiere at least 10 (8) jets, 4 b-tagged jets and 2 (1) reclustered jets:

4. Results and combination

• In the single lep. + OS dilep. channel, a **simultaneous fit** is performed to the HT_{had} disctributions **in 20 signal regions**, data-driven estimation of tt+jets;

- SS dilep. / trilep. cut-and-count analysis [3] in several regions, with data-driven estimations of non-prompt lepton and mis-identified charged leptons:

Region name	N_{j}	N_b	N_{ℓ}	Lepton charges	Kinematic criteria
SR1b2ℓ	≥ 1	1	2	++ or	$H_{\rm T} > 1000 {\rm GeV} {\rm and} E_{\rm T}^{\rm miss} > 180 {\rm GeV}$
$\mathrm{SR}2b2\ell$	≥ 2	2	2	++ or	$H_{\rm T} > 1200 \text{ GeV}$ and $E_{\rm T}^{\rm miss} > 40 \text{ GeV}$
SR3 <i>b</i> 2ℓ_L	≥ 7	≥ 3	2	++ or	$500 < H_{\rm T} < 1200 \text{ GeV} \text{ and } E_{\rm T}^{\rm miss} > 40 \text{ GeV}$
SR3 <i>b</i> 2ℓ	≥ 3	≥ 3	2	++ or	$H_{\rm T} > 1200~{\rm GeV}$ and $E_{\rm T}^{\rm miss} > 100~{\rm GeV}$
SR2 <i>b</i> 2ℓ	≥ 2	2	2	++ or	$H_{\rm T} > 1200 \text{ GeV}$ and $E_{\rm T}^{\rm miss} > 40 \text{ GeV}$
SR1 <i>b</i> 3ℓ	≥ 1	1	3	any	$H_{\rm T} > 1000 \text{ GeV}$ and $E_{\rm T}^{\rm miss} > 140 \text{ GeV}$
SR2b3ℓ	≥ 2	2	3	any	$H_{\rm T} > 1200 \text{ GeV}$ and $E_{\rm T}^{\rm miss} > 100 \text{ GeV}$
SR3 <i>b</i> 3ℓ_L	≥ 5	≥ 3	3	any	$500 < H_{\rm T} < 1000 \text{ GeV} \text{ and } E_{\rm T}^{\rm miss} > 40 \text{ GeV}$
$SR3b3\ell$	> 3	> 3	3	anv	$H_{\rm T} > 1000 {\rm GeV}$ and $E_{\rm m}^{\rm miss} > 40 {\rm GeV}$

- Results in both channels combined: excess of events over the SM background prediction observed with a significance of 2.8σ (1.0σ). Excess driven by the SS dilep. / trilep channel; compatibility between two channels quantified to be 31%;
- Assuming no signal, obs. (exp.) 95% CL upper limit of **5.3 (2.1)** times SM expectation.

References

- [1] CMS Collaboration, Search for standard model production of four top quarks with same-sign and multilepton final states in proton-proton collisions at $\sqrt{s} = 13$ TeV, Eur. Phys. J. C 78 (2018) 140
- [2] ATLAS Collaboration, Search for four-top-quark production in the single-lepton and opposite-sign dilepton final states in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, to be published
- [3] ATLAS Collaboration, Search for new phenomena in events with same-charge leptons and b-jets in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, to be published