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Observational problems of the SM

Two seemingly unrelated observations cannot be 
accounted for in the Standard Model

Neutrinos are 
massive and 
leptons mix

The Universe has a negligible 
amount of antimatter
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Table 1. Three-flavor oscillation parameters from our fit to global data after the NOW 2014
conference. The results are presented for the “Free Fluxes + RSBL” in which reactor fluxes have
been left free in the fit and short baseline reactor data (RSBL) with L . 100 m are included. The
numbers in the 1st (2nd) column are obtained assuming NO (IO), i.e., relative to the respective
local minimum, whereas in the 3rd column we minimize also with respect to the ordering. Note
that �m2

3` ⌘ �m2
31 > 0 for NO and �m2

3` ⌘ �m2
32 < 0 for IO.

leptonic mixing matrix to be:

|U | =

0

B@
0.801 ! 0.845 0.514 ! 0.580 0.137 ! 0.158

0.225 ! 0.517 0.441 ! 0.699 0.614 ! 0.793

0.246 ! 0.529 0.464 ! 0.713 0.590 ! 0.776

1

CA . (3.1)

By construction the derived limits in Eq. (3.1) are obtained under the assumption of the

matrix U being unitary. In other words, the ranges in the di↵erent entries of the matrix are

correlated due to the constraints imposed by unitarity, as well as the fact that, in general,

the result of a given experiment restricts a combination of several entries of the matrix. As

a consequence choosing a specific value for one element further restricts the range of the

others.

The present status of the determination of leptonic CP violation is illustrated in Fig. 3

where we show the dependence of the ��2 of the global analysis on the Jarlskog invariant

which gives a convention-independent measure of CP violation [51], defined as usual by:
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Using the parametrization in Eq. (1.1) we get

Jmax
CP = cos ✓12 sin ✓12 cos ✓23 sin ✓23 cos

2 ✓13 sin ✓13 . (3.3)
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tions. The discrepancy is at the [2.3, 5.3] � level, depending on the adopted analysis [228],
and constitutes the so-called Lithium problem. It is not clear if the discrepancy is due
to systematic errors in the observed abundances, to uncertainties in the nuclear inputs,
to underestimated processes that may reduce the Lithium abundance during the stellar
evolution or to new physics at work.

3.5.2 Cosmic Microwave Background

The study of the CMB anisotropies provides a precise measurement of the baryon to
photon ratio at the decoupling epoch via the determination of the parameter ⌦b, which
is related to the BAU via the relation [229]

⌘�B =
⇢c

hmi n0
�

⌦b, (3.86)

where n0
� is the present photon number density and hmi is the mean mass per baryon,

which is slightly lower than the proton one due to the Helium binding energy. We already
discussed the effects of ⌦b on the CMB angular power spectrum in Section 3.3.4. The
analysis performed by the Planck collaboration gives the value [178]

⌘�B = (6.10 ± 0.04) ⇥ 10
�10, (3.87)

which is in remarkable agreement with the value derived from BBN, eq.(3.85). Notice
that this observation is a probe of the BAU at an epoch when the temperature was T ⇠
eV, and is thus complementary to the BBN one that probes the BAU at T ⇠ MeV.

We notice here that the CMB angular power spectrum also depends on the parameter
Yp, that sets the number of free electrons between helium and hydrogen recombination,
that in turns determine the mean free path of photons due to Thomson scattering.
Thus the parameters (⌦b, H, Yp) are directly probed by CMB observation: since they
are correlated in BBN, it is possible to test the BBN scenario from CMB [229].

3.6 BAU and the Standard Model

Having established the presence of a small but finite BAU at the BBN epoch makes
it necessary to determine the mechanism at its origin. The first question to answer
is whether the SM can account for this asymmetry. Qualitatively, it complies with
Sakharov’s conditions. The C and CP symmetries and the baryon number are violated
by weak interactions. The violation of the C symmetry relies on the chiral structure of
the SU(2)L gauge group, with the weak current given by the sum of a vector component
(odd under C) and an axial one (even under C) [13]. The CP violation is related to
the presence of a physical phase in the Lagrangian, the �CKM phase in the Cabibbo-
Kobayashi-Maskawa quark mixing matrix [56]. Baryon number is conserved in the SM
at the perturbative level, however non-perturbative effects violate the sum of the baryon
plus lepton numbers B + L, while conserving B � L [230–232]. Indeed, the ground state
of an SU(N) gauge theory is not unique, but is composed by an infinite series of vacua,
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The natural (simple) way
Complete the SM field pattern with right-handed neutrinos

Figure from S. Alekhin et al., arXiv:1504.04855 [hep-ph]
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Neutrino masses and leptogenesis
Type-I seesaw mechanism: SM + gauge singlet fermions NI

Parameter |Ye|⇥ |Yµ| |Ye|� |Yµ| m1 [eV] ⇤ [GeV] Phases Osc. data

Range (0, 10�4) (�0.1, 0.1) (10�5, 1) (103, 104) (0, 2⇡) fixed

Table 1: The 9 free parameters of our scan: the modulus and phase of the electron and muon

Yukawas |Ye|, |Yµ|, ↵e and ↵µ, the Majorana mass scale ⇤, the absolute neutrino mass m1 and

the 3 yet unknown CP-violation phases (Dirac and Majorana) in the PMNS mixing matrix: �, ↵1

and ↵2. The PMNS mixing angles and mass splittings are fixed to their best fit from the global

analysis in Ref. [?].
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After electroweak phase transition < Φ > = v ≃ 174 GeV

The Lagrangian provides the ingredients for leptogenesis too

Sakharov

conditions 

• Complex Yukawa couplings Y as a source of CP


• B from sphaleron transitions until TEW ≃ 140 GeV


• sterile neutrinos deviations from thermal equilibrium
{
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Leptogenesis realisations

3rd Sakharov condition: 
deviation from thermal equilibrium

At which temperature(s) do 
sterile neutrinos enter/deviate 

from thermal equilibrium?
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BAU I: Thermal leptogenesis
Sterile neutrinos in thermal equilibrium if 
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Thermal leptogenesis: sterile neutrinos in equilibrium at large temperatures

Generation of a lepton asymmetry due to the Majorana character of the particles

M > 108 GeV to reproduce observed BAU
(relaxed to M > TeV for degenerate masses)

Difficult to test

in laboratory

Y

x=m/T

Yeq

decoupling

x

out of equilibrium
decay before TEW

M. Fukugita and T. Yanagida, Phys. Lett. B 174 (1986) 45

S. Davidson, E. Nardi and Y. Nir, arXiv:0802.2962 [hep-ph]
A. Abada, S. Davidson, A. Ibarra, F.-X. Josse-Michaux, M. Losada and A. Riotto, hep-ph/0605281

A. Pilaftsis and T. E. J. Underwood, hep-ph/0309342 �7



BAU II: ARS mechanism
Sterile neutrinos out of equilibrium at large temperatures

deviation from 
equilibrium
before TEW

Y

x=m/T

Yeq

TEW

E. K. Akhmedov, V. A. Rubakov and A. Y. Smirnov, hep-ph/9803255

From the seesaw 

relation
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M ~ GeV to reproduce ν masses Testable
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ARS leptogenesis

�9

How does the 
mechanism 

work?

A. Abada, S. Antusch, E. K. Akhmedov, G. Arcadi, T. Asaka, S. Blanchet, L. Canetti, E. 
Cazzato, V. Domcke, M. Drewes, S. Eijima, O. Fischer, T. Frossard, B. Garbrecht, D. 

Gueter, T. Hambye, P. Hernández, H. Ishida, M. Kekic, J. Klaric, J. López-Pavón, M.L., J. 
Racker, N. Rius, V. A. Rubakov, J. Salvado, M. Shaposhnikov, A. Y. Smirnov, D. Teresi…

Lepton number conserving 
(neutrino generation and oscillations)

Lepton number violating 
(thermal Higgs decay)

ULB-TH/17-07

Baryogenesis from L-violating Higgs-doublet decay in the density-matrix formalism

Thomas Hambye⇤ and Daniele Teresi†

Service de Physique Théorique - Université Libre de Bruxelles,
Boulevard du Triomphe, CP225, 1050 Brussels, Belgium

We compute in the density-matrix formalism the baryon asymmetry generated by the decay of
the Higgs doublet into a right-handed (RH) neutrino and a Standard Model lepton. The emphasis
is put on the baryon asymmetry produced by the total lepton-number violating decay. From the
derivation of the corresponding evolution equations, and from their integration, we find that this
contribution is fully relevant for large parts of the parameter space. This confirms the results found
recently in the CP-violating decay formalism with thermal corrections and shows in particular that
the lepton-number violating processes are important not only for high-scale leptogenesis but also
when the RH-neutrino masses are in the GeV range. For large values of the Yukawa couplings, we
also find that the strong washout is generically much milder for this total lepton-number violating
part than for the usual RH-neutrino oscillation flavour part.

I. INTRODUCTION

In the framework of the type-I seesaw model of neu-
trino masses with right-handed (RH) neutrinos below
the electroweak scale, there exists a well-known mech-
anism to account for the baryon asymmetry of the Uni-
verse, through oscillations of right-handed neutrinos [1–
13]. This Akhmedov-Rubakov-Smironv (ARS) scenario
is based on the generation of particle-antiparticle asym-
metries for the various lepton flavours. These asymme-
tries cancel each other in the total Standard-Model (SM)
lepton-number asymmetry but, thanks to washout ef-
fects, which do not a↵ect the di↵erent flavours in the
same way, a net lepton asymmetry remains. In this
framework, since the relevant processes do not involve a
RH neutrino Majorana mass insertion, a lepton number
can be assigned to the two helicities of the RH neutri-
nos. Thus, in the ARS scenario, the total lepton number
L, i.e. the sum of the SM and the RH-neutrino ones,
is conserved, but not both components separately, due
to flavour e↵ects. The SM lepton-number asymmetry
component which is produced in this way before the
sphalerons decouple is reprocessed in part into a baryon
asymmetry, unlike the other component. The evolution
of the lepton asymmetries as a function of the tempera-
ture of the thermal bath can be calculated in the density-
matrix formalism, which properly takes into account the
coherences between various RH neutrinos and their asso-
ciated oscillations.

In the di↵erent CP-violating decay formalism usually
used for leptogenesis, it has been shown recently [14] that
the total lepton-number violating decay of the Higgs dou-
blet into a RH neutrino and a SM lepton, i.e. the de-
cays which do involve a Majorana mass insertion, could
also account for the baryon asymmetry. This is possible
thanks to thermal e↵ects which induce a non-zero ab-
sorptive part for the self-energy of the RH neutrino in
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the final state of this decay, see Fig. 1 (as this absorp-
tive part vanishes at zero temperature). In Ref. [14] this
thermal cut of the self-energy has been computed in the
Kadano↵-Baym formalism. The production takes advan-
tage of the fact that, for RH neutrino masses below the
sphaleron cut, the Yukawa interactions do not thermal-
ize the RH neutrinos so easily as for higher masses. This
results in a large departure from equilibrium for the RH-
neutrino number densities in the final state, boosting the
asymmetry production.

This total (SM + RH neutrino) lepton number violat-
ing scenario is in many respects di↵erent from the ARS
total lepton-number conserving scenario. One di↵erence
is that it gives a non-vanishing asymmetry already for
one lepton flavour. Another is that, as a result of the
fact that it involves a Majorana mass insertion, it gives
rates for the relevant processes that are proportional to
m2

N
/T 2, relatively to the total lepton-number conserv-

ing ARS piece. As a result, the asymmetry is typically
produced at lower temperatures than in the ARS case,
basically not long before the sphaleron decoupling. Also,
since this mechanism does not require an asymmetric
washout for the di↵erent flavours, its contribution in the
weak-washout regime is proportional to 4 powers of the
Yukawa couplings, rather than to 6 for the ARS one.

The purpose of this paper is twofold. The first goal
is to determine how this L-violating contribution can
develop itself in the framework of the density-matrix
formalism, rather than in the usual leptogenesis CP-
violating decay formalism considered in [14], and to com-
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FIG. 1. Thermal cut in the H ! NL decay, which gives rise
to its purely-thermal L-violating CP-violation.
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relevant at late times

Figure 1: Feynman diagram for self energy of sterile neutrinos.

3 Kinetic Equations

Now we are at the position to derive the kinetic equations for ρN,N̄ and ρL,L̄. First of all, let

us consider the time evolution of ρN . Our construction is based on Ref. [15] (as in [4, 7]) and

starts with

dρN(kN)

dt
= −i

[

HN(kN), ρN(kN)
]

−
1

2

{

Γd
N(kN), ρN(kN)

}

+
1

2

{

Γp
N(kN), 1− ρN (kN)

}

, (3)

where 1 denotes the unit matrix with appropriate dimensions.#1 HN is the effective Hamilto-

nian, HN = H0
N +VN , where the free part is [H0

N(kN)]IJ = ENI
δIJ with ENI

=
√

k2
N +M2

I and

VN is the effective potential induced by the medium effects. Γd
N and Γp

N are the destruction

and production rates of NI . From now on we shall apply the approximation of the Boltzmann

statistics and replace the third term of Eq. (3) as 1
2{Γ

p
N , 1− ρN} → Γp

N .

The first term of Eq. (3) describes the coherent evolution of ρN and the oscillation of sterile

neutrinos occurs due to the off-diagonal elements of VN , which is essential for baryogenesis

under consideration. It is found from the self energy for sterile neutrinos at finite temperatures

in Fig. 1 that the effective potential for the mode k = kN is given by [19]

[

VN(kN)
]

IJ
=

NDT 2

16 kN

[

F †F
]

IJ
, (4)

where we disregard the correction to VN from the asymmetries in active leptons.#2

In the estimation of VN (as well as Γd,p
N below) all masses including MI are neglected since

they are irrelevant for temperatures of interest. (Note, however, that we keep MI in H0
N because

they are crucial for the oscillation of sterile neutrinos.) Further, we first calculate them in the

basis where neutrino Yukawa matrix is diagonal, and then find the expression in the original

basis shown in Eq. (1).

Let us then estimate the destruction and production rates of NI with momentum kN . In

the considering temperatures the dominant contributions come from the scattering processes

(A) NI + QL ↔ Lα + tR, (B) NI + t̄R ↔ Lα + Q̄L, and (C) NI + L̄α ↔ tR + Q̄L [4], shown in

#1 We have neglected the non-linear effects of ρN since the interaction rates between sterile neutrinos are
sufficiently small. Otherwise, see Ref. [17, 18].
#2 We have numerically confirmed that the change of the final baryon asymmetry by this effect is negligibly

small.

5

Figure 2: Feynman diagrams for scattering processes of production and destruction rates.

Fig. 2. Here QL and tR denote left-handed quark doublet of third generation and right-handed

top quark. We then divide the rates into three parts:

Γd,p
N (kN) = Γd,p (A)

N (kN) + Γd,p (B)
N (kN) + Γd,p (C)

N (kN) . (5)

The destruction rates of each process are found to be

[

Γd (A)
N (kN)

]

IJ
=

[

Γd (B)
N (kN)

]

IJ
= γd

N(kN)
[

F †F
]

IJ
,

[

Γd (C)
N (kN)

]

IJ
= γd

N(kN)
[

F †F
]

IJ
+
[

δΓd
N(kN)

]

IJ
. (6)

Here we have introduced

γd
N(kN) =

NCNDh2
t

64π3

T 2

kN
, (7)

where NC = 3 is a color factor and ht ≃ 1 is the top Yukawa coupling constant, and

[

δΓd
N(kN)

]

IJ
= γd

N(kN)

∫ ∞

0

dkLkL
NDT 2

[

F †
(

ρTL̄(kL)−NDρ
eq(kL)1

)

F
]

IJ

= γd
N(kN)

[

F †(A−1 − 1)F
]

IJ
, (8)

where we have used Eq. (2) in the last equality. On the other hand, the production rates are

[

Γp (A)
N (kN)

]

IJ
=

[

Γp (B)
N (kN)

]

IJ
= γd

N(kN) ρ
eq(kN)

[

F †F
]

IJ
+
[

δΓp
N(kN)

]

IJ
,

[

Γp (C)
N (kN)

]

IJ
= γd

N(kN) ρ
eq(kN)

[

F †F
]

IJ
, (9)

where

[

δΓp
N(kN)

]

IJ
= γd

N(kN) ρ
eq(kN)

{

∫ kN

0

dkL
NDkN

1− ρeq(kL)

ρeq(kL)

[

F †
(

ρL(kL)−NDρ
eq(kL)1

)

F
]

IJ

+

∫ ∞

kN

dkL
NDkN

1− ρeq(kN)

ρeq(kN)

[

F †
(

ρL(kL)−NDρ
eq(kL)1

)

F
]

IJ

}

= γd
N(kN) ρ

eq(kN)
[

F †(A− 1)F
]

IJ
. (10)
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Asymmetry generation example with 3 RHN
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TEW = 140 GeV sterile neutrinos density matrix

x =
T

TEW

/ M2

T 2

Y $ Y ⇤ (1)

L = LSM + iN̄I /@NI �
✓
F↵I

¯̀
↵
e�NI +

MIJ

2
N̄ c

INJ + h.c.

◆
, (2)

m⌫ ' �v2

2
F ⇤M�1F † (3)

R :

µ↵ : (4)
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x =
T

TEW

/ M2

T 2

Y $ Y ⇤ (1)

L = LSM + iN̄I /@NI �
✓
F↵I

¯̀
↵
e�NI +

MIJ

2
N̄ c

INJ + h.c.

◆
, (2)

m⌫ ' �v2

2
F ⇤M�1F † (3)

R :

µ↵ : (4)
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active flavours chemical potentials

Sterile neutrinos abundances

10-5 10-4 0.001 0.010 0.100 1

10-4

0.001

0.010

0.100

1

x

R
ii

equilibrium value

Deviation 
from 

thermal 
equilibrium

10-5 10-4 0.001 0.010 0.100 1

10-13

10-12

10-11

10-10

10-9

10-8

x

Δμ
α

Active flavours asymmetries

We switch off sterile 
neutrino oscillations 
when they become 

ineffective

10-5 10-4 0.001 0.010 0.100 1

10-16

10-14

10-12

10-10

x

R
ii -
R
ci
i

Sterile flavours asymmetries

Washout when 

states equilibrate

Total asymmetries

Lepton number 
violating processes 
relevant at low 

temperatures

active

sterile

10-5 10-4 0.001 0.010 0.100 1

10-18

10-16

10-14

10-12

x

�
α
Δμ

α
; �

iΔ
R
i
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Testability?

0.1 0.5 1 5 10 50

10-11

10-9

10-7

10-5

Mi [GeV]

|U
ei
|2

Experimentally 
excluded

Naive seesaw scaling

But these are (complex) matrices: cancellations are possible

Seesaw scaling

Parameter |Ye|⇥ |Yµ| |Ye|� |Yµ| m1 [eV] ⇤ [GeV] Phases Osc. data

Range (0, 10�4) (�0.1, 0.1) (10�5, 1) (103, 104) (0, 2⇡) fixed

Table 1: The 9 free parameters of our scan: the modulus and phase of the electron and muon

Yukawas |Ye|, |Yµ|, ↵e and ↵µ, the Majorana mass scale ⇤, the absolute neutrino mass m1 and

the 3 yet unknown CP-violation phases (Dirac and Majorana) in the PMNS mixing matrix: �, ↵1

and ↵2. The PMNS mixing angles and mass splittings are fixed to their best fit from the global

analysis in Ref. [?].

L = LSM + iNI /@NI �

✓
Y↵I`↵e�NI +

MIJ

2
N c

INJ + h.c.

◆
(1)

m⌫ ' �
v2

2
Y ⇤ 1

M
Y †

(2)

lim
�M!0

mi = 0, ) mi / µ,m

lim
�M!0

mi 6= 0, ) mi / n, d (3)

! (4)

d =
v
p
2
Y ⇤

! (5)

⌫R(0,0) (6)

�EW '
G2

Fm
5
I sin

2 ✓I
192⇡3

, (7)

⌦mh2 = 0.1426± 0.0020 (8)

⌦bh
2 = 0.02226± 0.00023 (9)

⌦ch
2 = 0.1186± 0.0020 (10)

BRµe < 5.7⇥ 10�13
(11)

BR⌧e < 3.3⇥ 10�8
(12)

BR⌧µ < 4.4⇥ 10�8
(13)

1

mν ≃ −v2F ∗ 1

M
F † (1)

|F | ! 10−7

√
M

GeV
(2)

|Uαi| !
√

mν

M
! 10−5

√
GeV
M

(3)

cαβ ≪ 1 (4)

Λ ≈ GeV (5)

1

In the absence of any structure 
in the F and M matrices



New physics
scale

SM as an effective theory
Relaxing the renormalizability condition there is only one dim=5 gauge invariant operator 

(Weinberg operator)

EWSB
ΔL = 2

�12

S. Weinberg, Phys. Rev. Lett. 43 (1979) 1566

Why are neutrinos so 
light?

[O]  4 (1)

UPMNS =

0

BBB@

c12c13 s12c13 s13e�i�

�s12c23 � c12s13s23ei� c12c23 � s12s13s23ei� c13s23

s12s23 � c12s13c23ei� �c12s23 � s12s13c23ei� c13c23

1

CCCA
⇥ diag(1, ei

↵21
2 , ei

↵31
2 ),

(2)

LW = �
g
p
2
eL

↵ /W
�
⇣
U †
LU⌫

⌘↵i

| {z }
U↵i

PMNS

⌫L
i + h.c. (3)

8
>>><

>>>:

eL↵ = UL↵�e
0
L�

eR↵ = UR↵�e
0
R�

⌫Li = U †
⌫ i↵⌫

0
L�

8
<

:
Ml ! URMlU

†
L = diag [me,mµ,m⌧ ]

m⌫ ! UT
⌫ m⌫U⌫ = diag [m1,m2,m3]

A⌫↵!⌫� (x) = h⌫� |⌫↵(x)i = U⇤
�jU↵ie

�ipix h⌫j |⌫ii = U⇤
�iU↵ie

�ipix (4)

P⌫↵!⌫� (x) =
��A⌫↵!⌫� (x)

��2 =
��U⇤

�iU↵ie
�ipix

��2 = |U�i|
2
|U↵i|

2 +
X

i<j

2 Re
h
U�jU

⇤
↵jU

⇤
�iU↵ie

i(pj�pi)x
i

(5)

(pj � pi)x = (Ej � Ei) t�
���pj

��� |pi|
�
` '

⇥
(Ej � Ei)�

���pj

��� |pi|
�⇤

` '
(m2

j �m2
i )`

2E
(6)

x = (x,x)

pi = (Ei,pi) =
⇣q

m2
i + |pi|,pi

⌘

h⌫i|⌫ji = �ij

U↵i

�m2
ij ⌘ m2

i �m2
j

`

E
(7)

J = Jeµ
12 = �Im

⇥
Ue1U

⇤
e2U

⇤
µ1Uµ2

⇤
= c213s13s12c12s23c23 sin � (8)

c↵�
v

⇤
v . eV ⌧ v (9)

1 High NP scale

Symmetry (Lepton number)
Suppression

mechanisms

J = Jeµ
12 = �Im

⇥
Ue1U

⇤
e2U

⇤
µ1Uµ2

⇤
= c213s13s12c12s23c23 sin � (8)

c↵�
v

⇤
v . eV ⌧ v

c↵� ⌧ 1
v

⇤
⌧ 1

{ (9)

References
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J = Jeµ
12 = �Im

⇥
Ue1U

⇤
e2U

⇤
µ1Uµ2

⇤
= c213s13s12c12s23c23 sin � (8)

c↵�
v

⇤
v . eV ⌧ v

c↵� ⌧ 1
v

⇤
⌧ 1

{ (9)
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SSB mechanism, in a similar way as Dirac mass terms are generated in the SM. However
such mechanism would require a Higgs-like scalar field with isospin I = 1, in order to
construct a gauge invariant Yukawa interaction containing the I = 1 term ⌫c

L
⌫L. Such a

field (a Higgs triplet) is not present in the SM, and so this possibility is also excluded.
To summarise, because of the gauge symmetries and the field content of the theory,

and allowing only renormalizable couplings, neutrinos are massless in the SM.
If one relaxes the renormalizability condition and considers the SM as an effective

theory valid up to some energy scale, and parametrises the effects of the unknown UV
completion as a tower of effective non-renormalizable operators, the first new physics
effects are encoded in the collection of allowed dimension 5 operators. Remarkably, there
exists a unique Lorentz and gauge-invariant operator that is possible to construct with
the SM fields, the so called Weinberg operator [28]

1

2

c↵�

⇤

⇣
lc
L↵

e�⇤
⌘ ⇣

e�†l�
L

⌘
+ h.c., (2.85)

where ↵, � = e, µ, ⌧ , c↵� is a complex symmetric matrix and ⇤ is a constant with the
dimensions of energy that is related to the new physics scale. When the Higgs field
acquires a nonzero VEV, the operator (2.85) contributes as

v2

2

c↵�

⇤
⌫c

L↵
⌫L� + h.c., (2.86)

that is a Majorana mass term for left-handed neutrinos. It is notable that the first
expected effect of physics BSM is just the appearance of non-zero Majorana neutrino
masses; in this sense neutrinos are truly a window to BSM physics.

2.3 Leptonic Lagrangian in the Standard Model

Given the SM field content, the SM Lagrangian is the most general renormalizable La-
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Y↵� is the matrix of the Yukawa interactions, which expresses the strength of the cou-
plings between the leptons and the Higgs field. It is a 3 ⇥ 3 matrix with complex entries
in general, which can be diagonalised through the bi-unitary transformation [29]

U †Y V = diag [y1, y2, y3] , (2.88)
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SSB mechanism, in a similar way as Dirac mass terms are generated in the SM. However
such mechanism would require a Higgs-like scalar field with isospin I = 1, in order to
construct a gauge invariant Yukawa interaction containing the I = 1 term ⌫c

L
⌫L. Such a

field (a Higgs triplet) is not present in the SM, and so this possibility is also excluded.
To summarise, because of the gauge symmetries and the field content of the theory,

and allowing only renormalizable couplings, neutrinos are massless in the SM.
If one relaxes the renormalizability condition and considers the SM as an effective

theory valid up to some energy scale, and parametrises the effects of the unknown UV
completion as a tower of effective non-renormalizable operators, the first new physics
effects are encoded in the collection of allowed dimension 5 operators. Remarkably, there
exists a unique Lorentz and gauge-invariant operator that is possible to construct with
the SM fields, the so called Weinberg operator [28]
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SM as an effective theory
Relaxing the renormalizability condition there is only one dim=5 gauge invariant operator 

(Weinberg operator)

EWSB
ΔL = 2

�13

S. Weinberg, Phys. Rev. Lett. 43 (1979) 1566

Why are neutrinos so 
light?

[O]  4 (1)

UPMNS =

0

BBB@

c12c13 s12c13 s13e�i�

�s12c23 � c12s13s23ei� c12c23 � s12s13s23ei� c13s23

s12s23 � c12s13c23ei� �c12s23 � s12s13c23ei� c13c23

1

CCCA
⇥ diag(1, ei

↵21
2 , ei

↵31
2 ),

(2)

LW = �
g
p
2
eL

↵ /W
�
⇣
U †
LU⌫

⌘↵i

| {z }
U↵i

PMNS

⌫L
i + h.c. (3)

8
>>><

>>>:

eL↵ = UL↵�e
0
L�

eR↵ = UR↵�e
0
R�

⌫Li = U †
⌫ i↵⌫

0
L�

8
<

:
Ml ! URMlU

†
L = diag [me,mµ,m⌧ ]

m⌫ ! UT
⌫ m⌫U⌫ = diag [m1,m2,m3]

A⌫↵!⌫� (x) = h⌫� |⌫↵(x)i = U⇤
�jU↵ie

�ipix h⌫j |⌫ii = U⇤
�iU↵ie

�ipix (4)

P⌫↵!⌫� (x) =
��A⌫↵!⌫� (x)

��2 =
��U⇤

�iU↵ie
�ipix

��2 = |U�i|
2
|U↵i|

2 +
X

i<j

2 Re
h
U�jU

⇤
↵jU

⇤
�iU↵ie

i(pj�pi)x
i

(5)

(pj � pi)x = (Ej � Ei) t�
���pj

��� |pi|
�
` '

⇥
(Ej � Ei)�

���pj

��� |pi|
�⇤

` '
(m2

j �m2
i )`

2E
(6)

x = (x,x)

pi = (Ei,pi) =
⇣q

m2
i + |pi|,pi

⌘

h⌫i|⌫ji = �ij

U↵i

�m2
ij ⌘ m2

i �m2
j

`

E
(7)

J = Jeµ
12 = �Im

⇥
Ue1U

⇤
e2U

⇤
µ1Uµ2

⇤
= c213s13s12c12s23c23 sin � (8)

c↵�
v

⇤
v . eV ⌧ v (9)

1 High NP scale

Symmetry (Lepton number)
Suppression

mechanisms

J = Jeµ
12 = �Im

⇥
Ue1U

⇤
e2U

⇤
µ1Uµ2

⇤
= c213s13s12c12s23c23 sin � (8)

c↵�
v

⇤
v . eV ⌧ v

c↵� ⌧ 1
v

⇤
⌧ 1

{ (9)

References

2

J = Jeµ
12 = �Im

⇥
Ue1U

⇤
e2U

⇤
µ1Uµ2

⇤
= c213s13s12c12s23c23 sin � (8)

c↵�
v

⇤
v . eV ⌧ v

c↵� ⌧ 1
v

⇤
⌧ 1

{ (9)

References

2

SSB mechanism, in a similar way as Dirac mass terms are generated in the SM. However
such mechanism would require a Higgs-like scalar field with isospin I = 1, in order to
construct a gauge invariant Yukawa interaction containing the I = 1 term ⌫c

L
⌫L. Such a

field (a Higgs triplet) is not present in the SM, and so this possibility is also excluded.
To summarise, because of the gauge symmetries and the field content of the theory,

and allowing only renormalizable couplings, neutrinos are massless in the SM.
If one relaxes the renormalizability condition and considers the SM as an effective

theory valid up to some energy scale, and parametrises the effects of the unknown UV
completion as a tower of effective non-renormalizable operators, the first new physics
effects are encoded in the collection of allowed dimension 5 operators. Remarkably, there
exists a unique Lorentz and gauge-invariant operator that is possible to construct with
the SM fields, the so called Weinberg operator [28]
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acquires a nonzero VEV, the operator (2.85) contributes as
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that is a Majorana mass term for left-handed neutrinos. It is notable that the first
expected effect of physics BSM is just the appearance of non-zero Majorana neutrino
masses; in this sense neutrinos are truly a window to BSM physics.

2.3 Leptonic Lagrangian in the Standard Model
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Y↵� is the matrix of the Yukawa interactions, which expresses the strength of the cou-
plings between the leptons and the Higgs field. It is a 3 ⇥ 3 matrix with complex entries
in general, which can be diagonalised through the bi-unitary transformation [29]
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SSB mechanism, in a similar way as Dirac mass terms are generated in the SM. However
such mechanism would require a Higgs-like scalar field with isospin I = 1, in order to
construct a gauge invariant Yukawa interaction containing the I = 1 term ⌫c

L
⌫L. Such a

field (a Higgs triplet) is not present in the SM, and so this possibility is also excluded.
To summarise, because of the gauge symmetries and the field content of the theory,

and allowing only renormalizable couplings, neutrinos are massless in the SM.
If one relaxes the renormalizability condition and considers the SM as an effective

theory valid up to some energy scale, and parametrises the effects of the unknown UV
completion as a tower of effective non-renormalizable operators, the first new physics
effects are encoded in the collection of allowed dimension 5 operators. Remarkably, there
exists a unique Lorentz and gauge-invariant operator that is possible to construct with
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that is a Majorana mass term for left-handed neutrinos. It is notable that the first
expected effect of physics BSM is just the appearance of non-zero Majorana neutrino
masses; in this sense neutrinos are truly a window to BSM physics.
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Fine tuning
If a symmetry is present 
in the Lagrangian, it will 
be manifest at any order 

in perturbation theory

The neutrino mass 
scale is stable under 
radiative corrections

We compute neutrino masses mν at 1-loop, and 
quantify the level of fine-tuning of a solution as

Lagrangian). If there is no symmetry, although at tree-level accidental cancellations can result in

small neutrino masses, then the combination of large Yukawa couplings and low-scale seesaw, without

any symmetry protecting neutrino masses, will in general result in large loop corrections, spoiling

the tree-level result. One can still satisfy the experimental constraints in this framework by invoking

accidental cancellations among different orders in the perturbative expansion, although the solution

will result quite fine tuned in this case. A well known example of approximate symmetry protecting

neutrino masses in the total lepton number L: experimentally there is no evidence for lepton number

violation, but small neutrino masses break lepton number conservation if they are Majorana particles.

One can thus link the smallness of neutrino masses with the smallness of the lepton-number violating

parameters in the theory, rendering small neutrino masses natural since in the massless limit the

Lagrangian acquires an additional symmetry. In this framework, after having integrated out the

BSM new physics states, there is a decorrelation between the L-violating 5-dimensional operator in

the effective theory, giving rise to non-zero neutrino masses, and the 6-dimensional operators, which

encode new-physics effects other than neutrino oscillations and which can be either L-violating or

L-conserving [60]. Since there is only one unique 5-dimensional operator in the SM [61], whose

coefficient is determined by neutrino masses and mixing, any possibility to disentangle among the

different models for neutrino mass generation relies in detecting the effects of at least the 6-dimensional

effective operators. Neutrino mass generations mechanisms based on an approximate lepton number

conservation include for instance supersymmetric models with R-parity violation [62–67], low-scale

Seesaw realisations [68–70], the νMSM [12], the Linear Seesaw [71–73] and Inverse Seesaw [29,74–77]

mechanisms. The key rôle of lepton number symmetry in low-scale leptogenesis realisations was

previously addressed in [10, 11].

In the exploration of the parameter space we do not impose any symmetry, but we allow the

underlying parameters in the theory to vary as reported in Table 1, in order to generate symmetry

protected as well as generic solutions. The prediction of an underlying lepton number symmetry is

indeed a mass spectrum characterised by a pair of sterile neutrinos N1,2
PD strongly degenerate in mass

and coupled to form a pseudo-Dirac state, with relative Yukawa couplings Fα1 ≃ −iFα2, and a third

state N3
Dec almost decoupled2, |Fα3| ≪

∣∣Fα(1,2)

∣∣ [60, 78, 79]. We then quantify a posteriori the level of

fine-tuning for each solution, by defining the following quantity

f.t.(mν) =

√√√√
3∑

i=1

(
mloop

i −mtree
i

mloop
i

)2

, (27) {eq:fine_tuning}

where mloop
i are the light neutrino masses computed at 1-loop level, while mtree

i are the same observ-

ables computed neglecting loop corrections. Eq. (27) quantifies how important are loop correction in

order to reproduce the observed neutrino mass spectrum: the smaller it is the more neutrino masses

are stable under radiative corrections, suggesting the presence of an underlying symmetry if Yukawa

couplings are sizeable larger than the naive Seesaw scaling |F | ! 10−7
√

M/GeV.

2Notice that the third state can equivalently be heavier or lighter with respect to the pseudo-Dirac pair.

12

mi loop 

1-loop neutrino

mass spectrum

mi tree 

tree-level neutrino

mass spectrum
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Results

Solutions with sizeable mixing exhibit a small degree of fine-tuning
Why?

Experimentally 
excluded
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Mass spectrum with 3 right-handed neutrinos 
and B - L approximate symmetry

Mass

How to preserve 
lepton number with 
Majorana states?

Pair two states to form a Dirac state

(equal masses, maximal mixing, opposite CP)

Decouple a state

If there is an odd number of right-handed neutrinos

and B - L approximate symmetry

Pseudo-Dirac state

Suppressed Yukawa couplings

or
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New mechanism: resonant asymmetry 
production in the B - L symmetry

Mass spectrum with 3 right-handed neutrinos and B - L symmetry
Mass

Vacuum massesThermal masses T ≫ TEW

B

C

A

B

C

If the vacuum mass of the decoupled state is heavier than the pseudo-
Dirac one, there is necessarily a level crossing at some finite temperature!

A



Level crossing: resonant asymmetry production

Sterile neutrinos abundances
equilibrium value

Active flavours asymmetries

Energy eigenvalues Total asymmetries

Level crossing
at x ~ 0.13
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Conclusion
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We find a new mechanism that:


• dynamically creates resonantly enhanced asymmetries

• protects them from washout

• works precisely in the B - L approximate symmetry

We performed the first systematic study of the low-scale leptogenesis 
scenario in the minimal Standard Model extended with 3 right-handed 

neutrinos having masses at the GeV scale

Low-scale solutions are testable in current experiments 
in the large-mixing region

Large mixings can result from fine-tuning or from 

an underlying B - L symmetry
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Neutrinoless effective mass
0νββ decay is a 
lepton number 

violating process 
It violates the B - L symmetry


