# Measurement of cross sections and properties of the Higgs boson in decays to four leptons using the ATLAS detector

#### O. Kortner on behalf of the ATLAS collaboration

Max-Planck-Institut für Physik, München

ICHEP 2018, Seoul, 06.07.2018



# $H \to Z Z^* \to 4 \ell$ channel



Higgs boson decay under consideration

•  $H \to ZZ^* \to \ell^+ \ell^- \ell'^+ \ell'^- \ (\ell, \ell' = e, \mu).$ •  $\sigma(pp \to H \to ZZ^* \to 4\ell) = 1.33 \text{ pb}.$ 

#### Experimental signature

- Two pairs of oppositely charged isolated electrons or muons from a common vertex.
- Mass of one lepton pair close to  $m_Z$ .

### Measurement of the Higgs boson mass



- Most precise Higgs boson mass measurement from  $H \to 4\ell$  channel.
- Small error on  $m_H$  totally dominated thanks to excellent lepton energy and momentum calibration.

# Quantities for the study of Higgs boson properties

### Higgs boson production modes



Transverse momentum of the Higgs boson  $p_{\mathrm{T},4\ell}$ 

- Test perturbative QCD calculations like ISR in ggF.
- Sensitivity to Langrangian structure of the Higgs boson interactions.

Number of jets in the final state  $N_{jets}$  provide sensitivity to

- theoretical modelling of gluon emission,
- the fractions of the different production modes.

Analysis based on LHC run-II data from 2015-2017: (ATLAS-CONF-2018-018)  $\int \mathcal{L}dt$ =79.8 fb<sup>-1</sup>,  $\sqrt{s}$ =13 TeV.

### Number of observed events grouped by final state

| Final     | Signal       | $ZZ^*$       | Other           | Total        | Observed |
|-----------|--------------|--------------|-----------------|--------------|----------|
| state     |              | background   | backgrounds     | expected     |          |
| $4\mu$    | $40.5\pm1.7$ | $19.0\pm1.1$ | $1.71\pm0.10$   | $61.2\pm2.0$ | 64       |
| $2e2\mu$  | $28.2\pm1.2$ | $13.3\pm0.8$ | $1.38\pm0.10$   | $42.8\pm1.4$ | 64       |
| $2\mu 2e$ | $22.1\pm1.4$ | $9.2\pm0.9$  | $2.99\pm0.09$   | $34.3\pm1.7$ | 39       |
| 4e        | $21.1\pm1.4$ | $8.6\pm0.8$  | $2.90\pm0.09$   | $32.5\pm1.6$ | 28       |
| Total     | $112\pm5$    | $50 \pm 4$   | $8.96 \pm 0.12$ | $171\pm6$    | 195      |



- Good agreement between the number of expected and observed events.
- Overall 14% excess of observed events due to an upward fluctuations of  $H \rightarrow 2e2\mu$  events.

## Fiducial cross sections

| Cross section [fb]     | Data ( | (± (stat.) | ± (syst.) ) | Standard Model prediction |
|------------------------|--------|------------|-------------|---------------------------|
| $\sigma_{4\mu}$        | 0.97   | ±0.17      | ±0.05       | $0.886 \pm 0.039$         |
| $\sigma_{4e}$          | 0.61   | $\pm 0.21$ | ±0.07       | $0.886 \pm 0.039$         |
| $\sigma_{2\mu 2e}$     | 0.88   | ±0.21      | $\pm 0.08$  | $0.786 \pm 0.035$         |
| $\sigma_{2e2\mu}$      | 1.37   | ±0.22      | ±0.07       | $0.786 \pm 0.035$         |
| $\sigma_{ m tot}$ [pb] | 67.2   | ±6.8       | ±4.1        | 55.7 ± 2.5                |



- Good agreement between the number of expected and observed events.
- Overall 14% excess of observed events due to an upward fluctuations of  $H \rightarrow 2e2\mu$  events.
- Dominant systematic uncertainty from 3% luminosity and ~4-8% uncertainties from pile-up (mainly affecting lepton isolation).

## Differential fiducial cross sections

Transverse Higgs boson momentum



No statistically significant deviations of the differential distribution from the Standard Model predictions!

### Event categories



- Cross sections measured in selected particle-level production bins (simplified template cross section framework).
- Bins are chosen to minimized theoretical uncertainty of the measurement and provide sensitivity to BSM effects.

## Purities of the event categories at reconstruction level



- Event categories not purely from a given production mode, e.g. only  $\sim$ 30% of the events in the VBF enriched category from VBF events, dominant contribution from ggF events.
- ⇒ Boosted decision trees used to improve the discrimination between the categories.

| Reconstructed event category     | BDT discriminant                                                                        | Input variables                                                                                                                       |
|----------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| $0j$ - $p_{\rm T}^{4\ell}$ -Low  | $\mathrm{BDT}_{\mathrm{ggF}}$                                                           | $p_{ m T}^{4\ell},\eta_{4\ell},D_{ZZ^*}$                                                                                              |
| $1j$ - $p_{\rm T}^{4\ell}$ -Low  | $\mathrm{BDT}_{\mathrm{VBF}_{\mathrm{c}}}^{1j - p_{\mathrm{T}}^{4\ell} - \mathrm{Low}}$ | $p_{\mathrm{T}}^{j},  \eta_{j},  \Delta R(j, 4\ell)$                                                                                  |
| $1j$ - $p_{\rm T}^{4\ell}$ -Med  | $\mathrm{BDT}_{\mathrm{VBF}}^{1j - p_{\mathrm{T}}^{4\ell} - \mathrm{Med}}$              | $p_{\mathrm{T}}^{j},  \eta_{j},  \Delta R(j, 4\ell)$                                                                                  |
| VBF-enriched- $p_{\rm T}^j$ -Low | $\mathrm{BDT}_{\mathrm{VBF}}$                                                           | $m_{jj},  \Delta \eta_{jj},  p_{\rm T}^{j1},  p_{\rm T}^{j2},  \eta_{4\ell}^*,  \Delta R_{jZ}^{\min},  p_{\rm T}^{4\ell j j}$         |
| VH-Had-enriched                  | $\mathrm{BDT}_{VH\text{-}\mathrm{Had}}$                                                 | $m_{jj},  \Delta \eta_{jj},  p_{\rm T}^{j1},  p_{\rm T}^{j2},  \eta_{4\ell}^*,  \Delta R_{jZ}^{\rm min},  \eta_{j1}$                  |
| <i>ttH</i> -Had-enriched         | BDT ++ H Had                                                                            | $m_{jj}, \Delta \eta_{jj}, \Delta R_{jZ}^{\min}, \Delta R(j, 4\ell), \eta_{4\ell}^*,$                                                 |
|                                  |                                                                                         | $E_{\mathrm{T}}^{\mathrm{miss}},  p_{\mathrm{T}}^{jj},  N_{\mathrm{jets}},  N_{b-\mathrm{jets}},  H_{\mathrm{T}},  \mathcal{M}_{sig}$ |

### Examples of distributions of BDT scores

VBF



VH→jjH



ttH



# Systematic uncertainties on the cross sections

|                                           | Experimental uncertainties [%] |           |               |           | Theory uncertainties [%] |     |           |               |             |
|-------------------------------------------|--------------------------------|-----------|---------------|-----------|--------------------------|-----|-----------|---------------|-------------|
| Measurement                               | Lum.                           | $e, \mu,$ | Jets, flavour | Reducible | $ZZ^*$                   |     |           | Signal        |             |
| [-0.5ex]                                  |                                | pile-up   | tagging       | backgr.   | backgr.                  | PDF | QCD scale | Parton Shower | Composition |
| Fiducial cross section                    |                                |           |               |           |                          |     |           |               |             |
|                                           | 2.8                            | 4.3       | < 0.1         | 0.3       | 1.6                      | 0.6 | 0.5       | 0.4           | 0.1         |
| Per decay channel fiducial cross sections |                                |           |               |           |                          |     |           |               |             |
| $4\mu$                                    | 2.8                            | 3.9       | < 0.1         | 0.3       | 1.6                      | 0.6 | 0.4       | 0.6           | 0.2         |
| 4e                                        | 2.8                            | 9.0       | < 0.1         | 1.0       | 1.6                      | 0.6 | 0.8       | 0.5           | 0.1         |
| $2\mu 2e$                                 | 2.7                            | 8.6       | < 0.1         | 0.9       | 1.5                      | 0.6 | 0.7       | 0.5           | 0.1         |
| $2e2\mu$                                  | 2.8                            | 3.6       | < 0.1         | 0.4       | 1.8                      | 0.6 | 0.7       | 0.5           | 0.2         |
| Stage-0 production bin cross sections     |                                |           |               |           |                          |     |           |               |             |
| ggF                                       | 2.9                            | 3.9       | 1.3           | 0.7       | 2.3                      | 0.4 | 2.1       | 0.7           | -           |
| VBF                                       | 1.7                            | 1.5       | 10.5          | 0.5       | 2.3                      | 2.3 | 9.5       | 5.1           | -           |
| VH                                        | 2.0                            | 1.7       | 7.8           | 1.8       | 5.6                      | 2.1 | 14.9      | 3.1           | -           |
| ttH                                       | 2.5                            | 1.9       | 3.9           | 1.5       | 1.9                      | 0.3 | 8.8       | 9.6           | -           |

### Dominant experimental uncertainties

- Luminsosity uncertainty  $\sim 3\%$ .
- Uncertainties from pile-up (mainly affecting lepton isolation)  $\sim$ 4-8%.
- ${\circ}$  Jet reconstruction and flavour tagging  ${\sim}5\text{--}10\%$  for VBF, VH, ttH.

#### Dominant theoretical uncertainties

- $ZZ^*$  cross section ~2%.
- QCD scale  $\sim 10\%$  for VBF, VH, ttH.

### Measured production cross sections



- Excellent agreement of the measured cross sections for ggF and VH production.
- Almost 3 times larger measured VBF cross section than predicted, but only  $1.8\sigma$  deviation.
- No observed ttH event in the  $4\ell$  final state, but 95% CL limits in agreement with the SM prediction.



- Excellent agreement of the measured cross sections in all ggF and VH categories.
- Deviation of the measured VBF cross sections from the SM prediction
  - at 1.6 $\sigma$  level for the low jet  $p_{\rm T}$  category,
  - <1  $\sigma$  level for the high jet  $p_{\rm T}$  category.

No statistically significant deviations from the Standard Model predictions!

## Likelihood contours

ggF vs VBF

VBF vs VH



Agreement between the measured and predicted cross sections at a level of  ${<}2\sigma$  due to the observed excess of VBF events.

- ${\circ}$  On-shell Higgs boson production: 118 GeV<  $m_{4\ell}$  <129 GeV.
- Off-shell Higgs boson production: 220 GeV<  $m_{4\ell}$  <2000 GeV.

Motivation for studying off-shell production

• 
$$\mu_{\text{off-shell}} = \frac{\sigma_{\text{off-shell}}^{gg \to H^* \to ZZ}}{\sigma_{\text{off-shell},\text{SM}}^{gg \to H^* \to ZZ}} = \kappa_{g,\text{off-shell}}^2 \cdot \kappa_{Z,\text{off-shell}}^2$$
  $\mu_{\text{on-shell}} = \frac{\sigma_{\text{on-shell}}^{gg \to H \to ZZ}}{\sigma_{\text{on-shell},\text{SM}}^{gg \to H \to ZZ}} = \frac{\kappa_{g,\text{on-shell}}^2 \cdot \kappa_{Z,\text{on-shell}}^2}{\Gamma_H / \Gamma_H^{\text{SM}}}$ 

$$\Rightarrow$$
 If  $\kappa_{\text{off-shell}} = \kappa_{\text{on-shell}}$  then

$$\frac{\mu_{\text{on-shell}}}{\mu_{\text{off-shell}}} = \frac{\Gamma_H}{\Gamma_H^{\text{SM}}}.$$

⇒ Provides sensitivity to  $\Gamma_H$  which is only 4.2 MeV in the SM and inaccessible through the width of the Higgs peak in the  $m_{4\ell}$  distribution.

## Limits on the Higgs boson's width $\Gamma_H$

# NEW!



- No significant excess over the ZZ and WZ background.
- $\Rightarrow$  95% CL limits on signal strength and  $\Gamma_H$ :

```
• \mu_{\rm off-shell} <3.8 (3.4 expected),
```

•  $\Gamma_H < 14.4 \text{ MeV} (15.2 \text{ MeV expected}).$ 

- The properties of the Higgs boson have been studied with  $H \to ZZ^* \to 4\ell$  events of the run-II ATLAS data.
- Accurate measurement of the Higgs boson mass with  $H \rightarrow 4\ell$  events with negligible systematic error:  $m_H = (124.71 \pm 0.30)$  GeV.
- No deviations from the Standard Model have been found in the differential cross sections  $d\sigma/dp_{{\rm T},4\ell}$  and  $d\sigma/dN_{jets}$ .
- The measured cross sections for the dominant Higgs boson production cross section are found to be in agreement with the Standard Model prediction at a level of better than  $2\sigma$ . Maximum deviation:  $1.9\sigma$  excess of VBF events.
- $\Rightarrow$  Excellent overall agreement with the Standard Model predictions.
  - Constraint from off-shell Higgs boson production:  $\Gamma_H < 14.4$  MeV.