Evidence for Higgs boson production in decays to two b-quarks using the ATLAS detector

Yuji Enari, ICEPP, the University of Tokyo

On behalf of the ATLAS collaboration

ICHEP 2018, Seoul, Korea 2018 July 5th

Road to discovery of $H \rightarrow bb$

Br

58 %

6.3 %

2.9 %

0.022 %

m_f

- Higgs mechanism: EWSB and Yukawa coupling.
- $H \rightarrow$ bb was one of key channels for Higgs search.
- Started in LEP era, developed in Tevatron, then LHC.

ATLAS detector

Month in Year

Jan'¹⁵ Jul'¹⁵ Jan'¹⁶ Jul'¹⁶ Jan'¹⁷ Jul'¹⁷ Jan'¹⁸ Jul'¹⁸

- General purpose detector
- Excellent vertex detector for b-tagging.

Evidence for Hbb at ATLAS $H \rightarrow$ bb searches with VH, VBF and ttH Y. Enari

• $H \rightarrow bb$ is hadronic final state

 \rightarrow need a clear signature for trigger at hadron collider

Xsec @ 13 TeV

4/13

Largest production Tough to use due to huge multi-jet background (CMS uses boosted channel.)

Signature of Forward jets \rightarrow can be triggered. Photon associated VBF signature enhances sensitivity!

 \rightarrow see next page.

High pT lepton from W or Z boson.

→ Trigger & suppress multi-jet background. Main channel for $H \rightarrow bb!$ Signature of ttbar pair

- \rightarrow can be triggered.
- all hadronic
 - lepton(s) w/ H→bb
 - multi-leptons
 - H**→**γγ
- \rightarrow Y. Horii's presentation. (7th July afternoon)

Evidence for Hbb at ATLAS $\mathbb{A} \to \mathbb{A}$ bb with VBF production Y. Enari ATLAS-CONF-2016-063

VBF all hadronic:

Two channels to "tag" VBF:

- Two-central w/ Forward jet $(3.2 < |\eta| < 4.4)$
- Four-central all VBF jets in $|\eta| < 2.5$

VBF+photon:

Two forward jet (3.2 < |h| < 4.4)+ 1 high pT photon

- → good for Trigger
- \rightarrow suppress gluon initiated BGs.

due to negative interference btw initial and final state radiation. (this makes also suppress ZZ fusion. therefore, WW fusion is dominant) For details: Nucl. Phys. B 781 64-84

5 / 13

- Final discriminant is m_{bb}.
- Background
 - Multi-jet : $qqbb(\gamma)$ background
 - $Z \rightarrow bb + jets$

• Both analyses use Boosted Decision Tree to make signal categories.

<u>Combined result (all had + VBFγ)</u>

JHEP 12 (2017) 024

 100 102

m_{II} [GeV]

 $m_{\tau}(W)$ [GeV]

E^{miss} [GeV]

JHEP 12 (2017) 024

- b-tagging
 - 2 b-tag (MV2c10) with 70% b-jet eff. c-jet eff.: 1/12, light jet eff.: 1/380

Improvement on invariant mass

• Muon-in-jet correction :

Add momentum of muon inside b-jet.

• PtReco correction :

Apply correction factor accounting for missing neutrino energy and out-of-cone effect based on MC response.

• Kinematic Fit (2lepton)

Correct b-jet energy by constraint of llbb balance.

Background on VH analyses

- Z+jets : 0-lepton and 2-lepton
- W+jets: 0-lepton and 1-lepton
- ttbar: main background for 1-lepton.
 - Present in 0- and 2-lepton.

Determine simultaneously in the fit.

- Normalization (Z, W, ttbar)
- nuisance parameters (2jet to 3jet SF, systematics)
- Hightarrowbb signal strength

Evidence for Hbb at ATLAS \mathbb{A} Multivariate technique for $H \rightarrow bb$ JHEP 12 (2017) 024

				• • Ruild t
Variable	0-lepton	1-lepton	2-lepton	Duna n
p_{T}^{V}		Х	Х	🗖 • Minimi
$E_{\mathrm{T}}^{\mathrm{miss}}$	×	×	×	• m
$p_{\mathrm{T}}^{b_1}$	×	×	×	bb
$p_{\mathrm{T}}^{ar{b}_2}$	×	×	×	• I rainir
$\overline{m_{bb}}$	×	×	×	∽ 10⁵⋿
$\Delta R(b_1, b_2)$	×	×	×	
$ \Delta\eta(b_1,b_2) $	×			$s_1 = 13$
$\Delta \phi(V,bb)$	×	×	×	$\stackrel{>}{\amalg} \stackrel{10}{\blacksquare} \stackrel{v}{=} p_{\tau}^{v} \ge 150$
$ \Delta\eta(V,bb) $			×	Ē
$m_{ m eff}$	×			10°
$\min[\Delta\phi(\ell, b)]$		×		
m_{T}^W		×		10 ²
$m_{\ell\ell}$			×	
$m_{ m top}$		×		10
$ \Delta Y(V,bb) $		×		
	Only	v in 3-jet ev	vents	
$p_{\mathrm{T}}^{\mathrm{jet}_3}$	×	Х	Х	
m_{bbj}	×	×	×	<u> </u>

- ze number of input variable
 - $\Delta R(b,b)$ and $p_T(V)$ are key variables.
- g: VH signals vs all Backgrounds.

Lepton categories

Y. Enari 10 / 13

0-lepton (E_{T}^{Miss} >150 GeV) 1-lepton (p_T ^W>150 GeV) 2-lepton (75 < p_T^Z < 150 GeV) $(p_T^Z > 150 \text{ GeV})$

In total 8 signal regions + 2 control regions for final fit.

Evidence for Hbb at ATLAS

Effect of systematic uncertainties

• Error on
$$\mu = \frac{(\sigma \cdot BR)_{meas}}{(\sigma \cdot BR)_{SM}}$$
 for VH, H \rightarrow bb

Source of uncertainty	σ_{μ}	
Total	0.39	
Statistical	0.24	Systematic error is
Systematic	0.31	larger than the statistics error.

Experimenta	l uncertainties			Theoretical and modelling u	incertainties	- Modeling side:
Jets		0.03		Signal	0.17	Signal systematic is
$E_{ extsf{T}}^{ extsf{miss}}$		0.03				the largest source:
Leptons		0.01		Floating normalisations	0.07	- parton shower
			On the experimental	Z + jets	0.07	- QCD scale
	<i>b</i> -jets	0.09	side. uncertainty on	W + jets	0.07	change acceptances
<i>b</i> -tagging	<i>c</i> -jets	0.04	b-iet efficiency is the	tī	0.07	
	light jets	0.04	dominant systematic.	Single top quark	0.08	
e	extrapolation	0.01		Diboson	0.02	Background IVIC
	I –			Multijet	0.02	Statistics!
Pile-up		0.01		·		→ can be improved
Luminosity		0.04		MC statistical	0.13	generate O(Billion)
						events…

Evidence for Hbb at ATLAS

Y. Enari 12_{/13}

JHEP 12 (2017) 024

Dijet-mass analysis (cross check) Tighter selection with additional $p_T(V)$ category. Perform fit on m_{bb}.

Combined MVA analysis result $Run2(36.1fb^{-1}) + Run1(4.7fb^{-1}+20.3fb^{-1})$

- H→bb is a key channel to probe the Higgs Yukawa coupling to fermions.
- ATLAS is developing VH, VBF and ttH analyses.
- In the VH analysis, an excess is observed at m_{bb}=125 GeV in the data corresponding to an integrated luminosity of 36.1 fb⁻¹ at √s=13 TeV. After combining with Run 1 result:

$$\mu = 0.90 \pm 0.18(\text{stat.})^{+0.21}_{-0.19}(\text{syst.}).$$

Observed (expected) significance : **3.6** σ (4.0 σ)

• This is an evidence for $H \rightarrow bb$.

One more step forward to Discovery. Stay tuned!!!

Evidence for Hbb at ATLAS *Y. Enari* 15 / 13

Extra slides

Evidence for Hbb at ATLAS *Y. Enari* 16 / 1.3

About dijet mass analysis (Run-2)

- Additional cross check of MVA analysis.
- Tightened event selection
 - Add categories pT(V) > 200 GeVwith $\Delta R(b,b)$.

Channel					
Selection	0-lepton	1-lepton	2-lepton		
$m_{ m T}^W$	-	$< 120 { m ~GeV}$	-		
$E_{\rm T}^{\rm miss}/\sqrt{S_{\rm T}}$	-	-	$< 3.5 \sqrt{\text{GeV}}$		

$p_{\rm T}^V$ regions					
p_{T}^{V}	(75, 150] GeV	(150, 200] GeV	$(200, \infty) \text{ GeV}$		
	(2-lepton only)				
$\Delta R(ec{b}_1,ec{b}_2)$	<3.0	<1.8	< 1.2		

Dijet mass analysis:

 $\mu = 1.30^{+0.28}_{-0.27}(\text{stat.})^{+0.37}_{-0.29}(\text{syst.})$ 3.5 (2.8) σ observed (expected) significance.

MVA analysis (main):

 $\mu = 1.20^{+0.24}_{-0.23} (\text{stat.})^{+0.34}_{-0.28} (\text{syst.}).$ 3.5 (3.0) σ observed (expected) significance.

Evidence for Hbb at ATLAS Event selection and acceptance of VH analysis

Table 2: Summary of the event selection in the 0-, 1- and 2-lepton channels.

Selection	0-lepton	1-lepton		2-lepton	
		e sub-channel	μ sub-channel		
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton	
Leptons	0 loose leptons	1 tight electron	1 medium muon	2 loose leptons with $p_{\rm T} > 7 \text{ GeV}$	
	with $p_{\rm T} > 7 \text{ GeV}$	$p_{\rm T} > 27 { m ~GeV}$	$p_{\rm T} > 25 { m ~GeV}$	\geq 1 lepton with $p_{\rm T}$ > 27 GeV	
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 150 GeV	> 30 GeV	-	-	
$m_{\ell\ell}$	-		-	81 GeV < $m_{\ell\ell}$ < 101 GeV	
Jets	Exactly	2 or 3 jets	Exactly 2 or \geq 3 jets		
Jet $p_{\rm T}$	> 20 GeV				
<i>b</i> -jets	Exactly 2 b-tagged jets				
Leading <i>b</i> -tagged jet $p_{\rm T}$	> 45 GeV				
H_{T}	> 120 (2 jets), >150 GeV (3 jets)		-	-	
min[$\Delta \phi(E_{\rm T}^{\rm miss}, jets)$]	$> 20^{\circ}$ (2 jets), $> 30^{\circ}$ (3 jets)	-		-	
$\Delta \phi(\boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}}, \boldsymbol{b}\boldsymbol{b})$	> 120°	_		_	
$\Delta \phi(\boldsymbol{b}_1, \boldsymbol{b}_2)$	< 140°	-		-	
$\Delta \phi(E_{\rm T}^{\rm miss}, E_{\rm T, trk}^{\rm miss})$	< 90°	-		-	
$p_{\rm T}^V$ regions	> 150 GeV			(75, 150] GeV, > 150 GeV	
Signal regions	\checkmark	$m_{bb} \ge 75 \text{ GeV or } m_{top} \le 225 \text{ GeV}$		Same-flavour leptons	
			•	Opposite-sign charge ($\mu\mu$ sub-channel)	
Control regions	_	$m_{bb} < 75 \text{ GeV} \text{ and } m_{top} > 225 \text{ GeV}$ Diffe		Different-flavour leptons	

$m_H = 125 \text{ GeV} \text{ at } \sqrt{s} = 13 \text{ TeV}$						
Process	Cross section × R [fb]	Acceptance [%]				
		0-lepton	1-lepton	2-lepton		
$qq \rightarrow ZH \rightarrow \ell\ell b\bar{b}$	29.9	< 0.1	< 0.1	7.0		
$gg \to ZH \to \ell \ell b \bar{b}$	4.8	< 0.1	< 0.1	15.7		
$qq \rightarrow WH \rightarrow \ell \nu b\bar{b}$	269.0	0.2	1.0	_		
$qq \rightarrow ZH \rightarrow \nu\nu b\bar{b}$	89.1	1.9	_	_		
$gg \to ZH \to \nu \nu b\bar{b}$	14.3	3.5	_	_		

Y. Enari 17 / 13