Measurement of the Higgs Boson Mass

William Leight for the ATLAS Collaboration ICHEP 2018 Seoul

The Higgs Boson Mass

- Free parameter of the SM
- Important ingredient in SM (and BSM) predictions
 - Not a test for new physics, but needed for such tests
 - Previously measured by ATLAS to precision of 0.33%
- Analysis results shown here from <u>arXiv:1806.00242</u> [hep-ex] (submitted to PLB) except where noted

ATLAS in Run-2

- Results shown use 36.1 fb⁻¹ of √s=13 TeV data collected by ATLAS in 2015 and 2016
- ATLAS is improved compared to Run-1
 - New pixel layer close to beamline improves rejection of electron backgrounds
 - Improved MS coverage for better muon reconstruction efficiency

Precision Mass Measurement

- Measurement involves fitting m_H-dependent model to data
 - Model developed from simulation
- Requires precise understanding of particle response in the detector
 - Simulation must accurately reflect data
 - Mass resolution limited by resolution of Higgs boson decay products

Measuring Muon Momenta

- Muon tracks are measured separately in MS and ID
 - ► Then combined fit w/all hits + calo information
- Resolution and p_T scale measured in Z, J/ ψ decays
 - Simulated momenta corrected and smeared to match data
 - Uncertainties on scale <0.05% in barrel, <0.2% in endcap
 - + Energy loss, material, radial distortions, B-field
 - Uncertainties on resolution 1-2% in barrel, up to 10% in endcap
- Additional η-φ dependent correction for residual ID misalignment improves Z→μμ resolution by 1-5%

Electron and Photon Energy Measurement

- For both, reconstruction starts with a cluster in the EM calorimeter
 - Can be matched to track, conversion vertex, or nothing
- MVA calibration for e/γ energy
 - Trained on MC samples
 - Corrects for energy loss in material in front of calorimeter, punch-through, shower leakage, and variation of cluster response
 - Different corrections for electrons, converted photons, and photons
- Energy scale and resolution corrections
 - ► Z→ee decays used for final determination of resolution and scale
 - Data energy scale corrected to match MC
 - MC resolution corrected to match data
 - Uncertainty on scale<0.1% for e, few per mille for γ
 - From relative calibration of calo layers, material, energy response linearity, and e-γ shower shape differences

$H \rightarrow ZZ^* \rightarrow 4I$

•Use 4I vertexing constraint in event selection.

•FSR photons are identified and included in the mass calculation

Per-Event Response Method

= $P(m_{4I};m_{H},\Gamma_{H},kinematics)$

- Less susceptible to statistical fluctuations seen in low-stats measurements like this one
- Response of each e or μ in each $\eta\mbox{-}E$ detector region modeled as sum of 3 gaussians
 - By fit to simulation
 - ► 3 ~ the core and radiative/bremsstrahlung tails
- To obtain 4I response, convolute responses of the 4 leptons
 - Gives 81 gaussians; merged to 4 without losing meaningful information
- PDF for given event obtained by convoluting 4I response with Breit-Wigner
 - Final PDF is convolution of each event's PDF
- Method validated on Z→4I events

Mass Measurement

▶ m₁₂ kinematically constrained to m_z to improve the resolution (by ~15%)

- Data in 110<m_{4l,constrained}<135 GeV split by final state (4 μ , 2 μ 2e, 2e2 μ , 4e)
 - ▶ Resolution better for μ than e → ~ resolution bins
- Each final state is split into 4 bins using BDT trained to separate ggH and ZZ*
 - Gain 8% improvement in uncertainty thanks to improved significance
- Background model from smoothing m₄₁ distribution from simulated samples
- Simultaneous fit performed over all categories
 - Cross-check using template method: uncertainties are ~3% smaller with per-event

Results in the 4I Channel

- Total uncertainty of 0.37 GeV compatible with expected of 0.35 GeV
 - Main systematics from muon momentum and electron energy scale
- Combination with Run-1 reduces uncertainty further
 - Systematics are correlated, signal normalizations are not
- Result is still statistics-limited

-2 In(A)

$H \rightarrow \gamma \gamma$

- •Tight isolation and identification requirements for photons
- •Diphoton vertex chosen using a neural network
- •Events sorted into 31 exclusive categories based on properties of photons and other objects in the event

- Backgrounds from SM γγ production and jets faking photons
- •Parametrized with functional form depending on category
 - Functional form for background chosen to ensure small fitted signal yield when fitting background-only samples

Diphoton Mass Parameterization

- Signal in each category modeled as double-sided Crystal Ball
 - ► Parameters are linear functions of m_H
 - Obtained from simultaneous fit to simulated samples at different m_H values
 - ► Cross-section and BR are both parametrized as function of m_H as well
 - Former by production mode

Diphoton Mass Measurement

Source	Systematic uncertainty on $m_H^{\gamma\gamma}$ [MeV]
EM calorimeter cell non-linearity - Not	correlated ±180
EM calorimeter layer calibration	±170
Non-ID material	± 120
ID material	± 110
Lateral shower shape	± 110
$Z \rightarrow ee$ calibration	± 80
Conversion reconstruction	± 50
Background model	± 50
Selection of the diphoton production vertex	± 40
Resolution	± 20
Signal model	± 20

Run-2: m_H =124.93 ± 0.21 (stat) ± 0.34 (syst)

Run1+2: m_H=125.32 ± 0.19 (stat) ± 0.29 (syst)

- Mass is obtained by a simultaneous fit over all categories
- Combination w/Run-1
 - Signal strengths not correlated
 - Part of photon energy scale systematics correlated

Combined Mass Measurement

- Electron and photon calibration systematics are correlated between analyses
- Signal-strength parameters are left free
- Photon calibration systematics are the most important
- Final result compatible with Run-1 combined ATLAS+CMS measurement
- Mass measured with relative uncertainty of 0.2%!

Summary

- The mass of the Higgs boson has been measured at the ATLAS detector in 36.1 fb⁻¹ of 13 TeV data
- Results from the 4I and γγ channels are compatible
- Combined Run-2 result shows a significant increase of precision over combined Run-1 result
- Combined Run-1+Run-2 result of m_H=124.97±0.24 GeV agrees well with combined ATLAS-CMS result from Run-1

Backup

Muon Resolution and Scale

Full H4I Event Selection

	Leptons and Jets requirements	
	Electrons	
Loose Likelihood quality electrons with hit in innermost layer, $E_{\rm T} > 7$ GeV and $ \eta < 2.47$		
	Muons	
	Loose identification $ \eta < 2.7$	
	Calo-tagged muons with $p_{\rm T} > 15$ GeV and $ \eta < 0.1$	
Combin	ed, stand-alone (with ID hits if available) and segment tagged muons with $p_{\rm T} > 5$ GeV	
	Jets	
ant	k_t jets with $p_T > 30$ GeV, $ \eta < 4.5$ and passing pile-up jet rejection requirements	
	Event Selection	
QUADRUPLET	Require at least one quadruplet of leptons consisting of two pairs of same flavour	
Selection	opposite-charge leptons fulfilling the following requirements:	
	$p_{\rm T}$ thresholds for three leading leptons in the quadruplet - 20, 15 and 10 GeV	
	Maximum of one calo-tagged or standalone muon per quadruplet	
	Select best quadruplet to be the one with the (sub)leading dilepton mass	
	(second) closest the Z mass	
	Leading dilepton mass requirement: 50 GeV $< m_{12} < 106$ GeV	
	Sub-leading dilepton mass requirement: $12 < m_{34} < 115$ GeV	
	Remove quadruplet if alternative same-flavour opposite-charge dilepton gives $m_{\ell\ell} < 5$ GeV	
	$\Delta R(\ell, \ell') > 0.10 \ (0.20)$ for all same(different)-flavour leptons in the quadruplet	
Isolation	Contribution from the other leptons of the quadruplet is subtracted	
	Muon track isolation ($\Delta R \le 0.30$): $\Sigma p_T/p_T < 0.15$	
	Muon calorimeter isolation ($\Delta R = 0.20$): $\Sigma E_T / p_T < 0.30$	
	Electron track isolation ($\Delta R \le 0.20$) : $\Sigma E_T/E_T < 0.15$	
	Electron calorimeter isolation ($\Delta R = 0.20$) : $\Sigma E_T/E_T < 0.20$	
Імраст	Apply impact parameter significance cut to all leptons of the quadruplet.	
Parameter	For electrons : $ d_0/\sigma_{d_0} < 5$	
SIGNIFICANCE	For muons : $ d_0/\sigma_{d_0} < 3$	
VERTEX	Require a common vertex for the leptons	
Selection	χ^2 /ndof < 6 for 4 μ and < 9 for others.	

Hyy Reconstructed Categories

Category	Selection
tH lep 0fwd	$N_{\rm lop} = 1, N_{\rm icts}^{\rm cen} \le 3, N_{b-\rm tag} \ge 1, N_{\rm icts}^{\rm fwd} = 0 \ (p_{\rm T}^{\rm jet} > 25 {\rm GeV})$
tII lep 1fwd	$N_{ m lep} = 1, N_{ m iets}^{ m cen} \leq 4, N_{b- m tag} \geq 1, N_{ m iets}^{ m fwd} \geq 1 (p_{ m T}^{ m jet} > 25 { m GeV})$
ttII lep	$N_{\text{lep}} \geq 1, N_{\text{iets}}^{\text{con}} \geq 2, N_{b-\text{tag}} \geq 1, Z_{\ell\ell} \text{ veto } (p_{\text{T}}^{\text{jet}} > 25 \text{GeV})$
ttH had BDT1	$N_{\rm lop} = 0, N_{\rm jets} \ge 3, N_{b-\rm tag} \ge 1, {\rm BDT_{ttH}} > 0.92$
ttII had BDT2	$N_{ m lep} = 0, N_{ m jets} \geq 3, N_{b- m tag} \geq 1, 0.83 < { m BDT_{ttll}} < 0.92$
ttH had BDT3	$N_{ m lep} = 0, N_{ m jets} \ge 3, N_{b- m tag} \ge 1, 0.79 < { m BDT}_{ m ttII} < 0.83$
ttII had BDT4	$N_{ m lep} = 0, N_{ m jets} \geq 3, N_{b- m tag} \geq 1, 0.52 < { m BDT}_{ m ttH} < 0.79$
tH had 4j1b	$N_{\rm lop} = 0, N_{\rm jets}^{\rm con} = 4, N_{b-\rm tag} = 1 \left(p_{\rm T}^{\rm jet} > 25 {\rm GeV} \right)$
tII had 4j2b	$N_{ m lep} = 0, N_{ m jets}^{ m con} = 4, N_{b- m tag} \ge 2 (p_{ m T}^{ m jet} > 25 { m GeV})$
VII dilep	$N_{ m lep} \geq 2, \ 70 { m GeV} \leq m_{\ell\ell} \leq 110 { m GeV}$
VH lep High	$N_{ m lep} = 1, \ m_{e\gamma} - 89 { m GeV} > 5 { m GeV}, \ p_{ m T}^{\ell + E_{ m T}^{ m miss}} > 150 { m GeV}$
VH lep Low	$N_{\rm lop} = 1, m_{e\gamma} - 89 { m GeV} > 5 { m GeV}, \ p_{\rm T}^{\ell + E_{\rm T}^{\rm max}} < 150 { m GeV}, E_{\rm T}^{\rm miss}$ significance > 1
VII MET High	$150 \mathrm{GeV} < E_{\mathrm{T}}^{\mathrm{miss}} < 250 \mathrm{GeV}, E_{\mathrm{T}}^{\mathrm{miss}} \mathrm{significance} > 9 \mathrm{or} E_{\mathrm{T}}^{\mathrm{miss}} > 250 \mathrm{GeV}$
VII MET Low	$80 \mathrm{GeV} < E_{\mathrm{T}}^{\mathrm{miss}} < 150 \mathrm{GeV}, E_{\mathrm{T}}^{\mathrm{miss}} \mathrm{significance} > 8$
jet BSM	$p_{\mathrm{T,j}\mathrm{I}} > 200\mathrm{GeV}$
VII had tight	$60{ m GeV} < m_{ m jj} < 120{ m GeV},{ m BDT_{VII}} > 0.78$
VII had loose	$60~GeV < m_{ m jj} < 120{ m GeV}, ~0.35 < { m BDT}_{ m VII} < 0.78$
VBF tight, high $p_{T_{LVI}}^{H_{JJ}}$	$ \Delta \eta_{jj} > 2, \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, p_{T_{ext}}^{H_{jj}} > 25 \text{GeV}, \text{ BDT}_{\text{VBF}} > 0.47$
VBF loose, high p_{T}^{Hjj}	$ \Delta \eta_{jj} > 2, \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, p_{T_{exc}}^{H_{jj}} > 25 \mathrm{GeV}, -0.32 < \mathrm{BDT}_{\mathrm{VBF}} < 0.47$
VBF tight, low $p_{T_{even}}^{H_{ff}}$	$ \Delta \eta_{jj} > 2, \ \eta_{\gamma\gamma} - 0.5(\eta_{\rm j1} + \eta_{\rm j2}) < 5, \ p_{{ m T}_{ m corr}}^{Hjj} < 25{ m GeV},\ { m BDT}_{ m VBF} > 0.87$
VBF loose, low $p_{\rm T}^{IIJJ}$	$ \Delta \eta_{jj} > 2, \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5, p_{\rm T}^{IIjj} < 25 {\rm GeV}, 0.26 < {\rm BDT}_{\rm VBF} < 0.87$
ggII 2J BSM	≥ 2 jets, $p_{\rm T}^{\gamma\gamma} \geq 200 { m GeV}$
ggII 2J IIigh	≥ 2 jets, $p_{T^{\gamma}}^{\gamma\gamma} \in [120, 200]$ GeV
ggH 2J Med	≥ 2 jets, $p_{\mathrm{T}}^{rr} \in [60, 120]~\mathrm{GeV}$
ggH 2J Low	≥ 2 jets, $p_{11}^+ \in [0, 60]$ GeV
ggH 1J BSM	$= 1$ jet, $p_{12}^{+} \geq 200 \text{GeV}$
ggH 1J lligh	= 1 jet, $p_{T'} \in [120, 200]$ GeV = 1 jet, $p_{T'}^{27} \in [60, 120]$ CuV
gg111J.Med	$= 1$ jet, $p_{T} \in [00, 120]$ GeV $= 1$ into $\pi^{27} \in [0, 80]$ CoV
ggii 13 Low	= 1 jet, $p_{\hat{T}} \in [0, 00]$ GeV = 0 jets one photon with $ n > 0.05$
ggn OJ Con	= 0 jets, one photons with $ \eta > 0.95$
sgn ob Con	$= a$ Jers, two photons with $ M \leq a.aa$

Cross-checks Н-ATLAS √s=13 TeV, 36.1 fb Η→γγ BB BE EE CC UC UU

- -2 2 3 -3 4 n Δ_{i} [GeV]
- BB: both photons in barrel
- BE: one photon in barrel, one in endcap

5

- EE: both photons in endcap
- CC: both photons converted
- UC: one photon converted, one not
- UU: both photons unconverted

41 Fits in Final States

