Measurement of the Higgs Boson Mass

William Leight
for the ATLAS Collaboration
ICHEP 2018
Seoul
The Higgs Boson Mass

- Free parameter of the SM
- Important ingredient in SM (and BSM) predictions
 - Not a test for new physics, but needed for such tests
 - Previously measured by ATLAS to precision of 0.33%
- Analysis results shown here from arXiv:1806.00242 [hep-ex] (submitted to PLB) except where noted

Figure:
- 68% and 95% CL contours
- Fit w/o M_W and m_t measurements
- Fit w/o M_W, m_t, and M_H measurements
- Direct M_W and m_t measurements

Table:
<table>
<thead>
<tr>
<th>M_W (GeV)</th>
<th>m_t (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.013</td>
<td>80.379</td>
</tr>
</tbody>
</table>

Equations:
- $\sigma_{1\pm\text{comb.}} = 0.46\text{ GeV}$
- $m_t = 172.47\text{ GeV}$
- $m_t = 0.46\text{ GeV}$
- $M_W = 80.379 \pm 0.013\text{ GeV}$
- $M_W = 80.25\text{ GeV}$
- $M_W = 80.3\text{ GeV}$
- $M_W = 80.35\text{ GeV}$
- $M_W = 80.4\text{ GeV}$
- $M_W = 80.45\text{ GeV}$
- $M_W = 80.5\text{ GeV}$
- $H = 50\text{ GeV}$
- $H = 300\text{ GeV}$
- $H = 600\text{ GeV}$

Reference:
ATLAS in Run-2

• Results shown use 36.1 fb$^{-1}$ of $\sqrt{s}=13$ TeV data collected by ATLAS in 2015 and 2016

• ATLAS is improved compared to Run-1
 ▶ New pixel layer close to beamline improves rejection of electron backgrounds
 ▶ Improved MS coverage for better muon reconstruction efficiency
Precision Mass Measurement

- Measurement involves fitting m_H-dependent model to data
 - Model developed from simulation
- Requires precise understanding of particle response in the detector
 - Simulation must accurately reflect data
 - Mass resolution limited by resolution of Higgs boson decay products
Measuring Muon Momenta

• Muon tracks are measured separately in MS and ID
 ▷ Then combined fit w/all hits + calo information
• Resolution and p_T scale measured in Z, J/ψ decays
 ▷ Simulated momenta corrected and smeared to match data
 ▷ Uncertainties on scale <0.05% in barrel, <0.2% in endcap
 ‣ Energy loss, material, radial distortions, B-field
 ▷ Uncertainties on resolution 1-2% in barrel, up to 10% in endcap
• Additional η-ϕ dependent correction for residual ID misalignment improves $Z\rightarrow\mu\mu$ resolution by 1-5%
Electron and Photon Energy Measurement

• For both, reconstruction starts with a cluster in the EM calorimeter
 ▶ Can be matched to track, conversion vertex, or nothing
• MVA calibration for e/γ energy
 ▶ Trained on MC samples
 ▶ Corrects for energy loss in material in front of calorimeter, punch-through, shower leakage, and variation of cluster response
 ▶ Different corrections for electrons, converted photons, and photons
• Energy scale and resolution corrections
 ▶ Z→ee decays used for final determination of resolution and scale
 ✦ Data energy scale corrected to match MC
 ✦ MC resolution corrected to match data
 ▶ Uncertainty on scale<0.1% for e, few per mille for γ
 ✦ From relative calibration of calo layers, material, energy response linearity, and e-γ shower shape differences

Scale correction parameter α

ATLAS Preliminary
\[
\sqrt{s} = 13 \text{ TeV}, \quad L = 3.2 \text{ (2015)} + 32.9 \text{ (2016) fb}^{-1}
\]

- Electrons from Z→ee, 2015 data
- Electrons from Z→ee, 2016 data

Resolution correction c'

ATLAS Preliminary
\[
\sqrt{s} = 13 \text{ TeV}, \quad L = 3.2 \text{ (2015)} + 32.9 \text{ (2016) fb}^{-1}
\]

- Electrons from Z→ee

ICHEP 2018, July 4-11, 2018, Seoul, South Korea
Main background is ZZ* production

- $qq\rightarrow ZZ$ simulated at NLO with POWHEG, QCD+EW corrections as function of m_{ZZ}.
- $gg\rightarrow ZZ$ simulated at LO with $gg2VV$, with k-factor for higher-order QCD effects

Reducible background from Z+jets and ttbar estimated using data-driven methods

- Loose lepton isolation and identification requirements imposed
- Electrons and muons accepted down to p_T of 7 and 5 GeV respectively

Use 4l vertexing constraint in event selection.

FSR photons are identified and included in the mass calculation
Per-Event Response Method

• Less susceptible to statistical fluctuations seen in low-stats measurements like this one
• Response of each e or μ in each η-E detector region modeled as sum of 3 gaussians
 ‣ By fit to simulation
 ‣ $3 \sim$ the core and radiative/bremsstrahlung tails
• To obtain 4l response, convolute responses of the 4 leptons
 ‣ Gives 81 gaussians; merged to 4 without losing meaningful information
• PDF for given event obtained by convoluting 4l response with Breit-Wigner
 ‣ Final PDF is convolution of each event’s PDF
• Method validated on $Z \rightarrow 4l$ events

$= P(m_{4l}; m_H, \Gamma_H, \text{kinematics})$
Mass Measurement

- m_{12} kinematically constrained to m_Z to improve the resolution (by ~15%)
- Data in $110 < m_{4l,constrained} < 135$ GeV split by final state (4μ, $2\mu 2e$, $2e2\mu$, $4e$)
 - Resolution better for μ than $e \rightarrow \sim$ resolution bins
- Each final state is split into 4 bins using BDT trained to separate ggH and ZZ*
 - Gain 8% improvement in uncertainty thanks to improved significance
- Background model from smoothing m_{4l} distribution from simulated samples
- Simultaneous fit performed over all categories
 - Cross-check using template method: uncertainties are ~3% smaller with per-event
Results in the 4l Channel

\[\sqrt{s} = 13 \text{ TeV}, \ 36.1 \ \text{fb}^{-1} \]

H→ZZ*→4l

- Total uncertainty of 0.37 GeV compatible with expected of 0.35 GeV
 - Main systematics from muon momentum and electron energy scale
- Combination with Run-1 reduces uncertainty further
 - Systematics are correlated, signal normalizations are not
- Result is still statistics-limited

\[\text{Run-2: } m_H = 124.79 \pm 0.36 \ (\text{stat}) \pm 0.05 \ (\text{syst}) \]

\[\text{Run1+2: } m_H = 124.71 \pm 0.30 \ (\text{stat}) \pm 0.05 \ (\text{syst}) \]

<table>
<thead>
<tr>
<th>Systematic effect</th>
<th>Uncertainty on (m_{ZZ^*}) [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muon momentum scale</td>
<td>40</td>
</tr>
<tr>
<td>Electron energy scale</td>
<td>26</td>
</tr>
<tr>
<td>Pile-up simulation</td>
<td>10</td>
</tr>
<tr>
<td>Simulation statistics</td>
<td>8</td>
</tr>
</tbody>
</table>
$H \rightarrow \gamma\gamma$

- Tight isolation and identification requirements for photons
- Diphoton vertex chosen using a neural network
- Events sorted into 31 exclusive categories based on properties of photons and other objects in the event
- Backgrounds from SM $\gamma\gamma$ production and jets faking photons
- Parametrized with functional form depending on category
 - Functional form for background chosen to ensure small fitted signal yield when fitting background-only samples

arXiv:1802.04146
Diphoton Mass Parameterization

- Signal in each category modeled as double-sided Crystal Ball
 - Parameters are linear functions of m_H
 - Obtained from simultaneous fit to simulated samples at different m_H values
 - Cross-section and BR are both parametrized as function of m_H as well
 - Former by production mode
Diphoton Mass Measurement

• Mass is obtained by a simultaneous fit over all categories
• Combination w/Run-1
 ▶ Signal strengths not correlated
 ▶ Part of photon energy scale systematics correlated

Run-2: $m_H = 124.93 \pm 0.21 \text{ (stat)} \pm 0.34 \text{ (syst)}$

Run1+2: $m_H = 125.32 \pm 0.19 \text{ (stat)} \pm 0.29 \text{ (syst)}$

<table>
<thead>
<tr>
<th>Source</th>
<th>Systematic uncertainty on m_H^γ [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM calorimeter cell non-linearity</td>
<td>± 180</td>
</tr>
<tr>
<td>EM calorimeter layer calibration</td>
<td>± 170</td>
</tr>
<tr>
<td>Non-ID material</td>
<td>± 120</td>
</tr>
<tr>
<td>ID material</td>
<td>± 110</td>
</tr>
<tr>
<td>Lateral shower shape</td>
<td>± 110</td>
</tr>
<tr>
<td>$Z \rightarrow ee$ calibration</td>
<td>± 80</td>
</tr>
<tr>
<td>Conversion reconstruction</td>
<td>± 50</td>
</tr>
<tr>
<td>Background model</td>
<td>± 50</td>
</tr>
<tr>
<td>Selection of the diphoton production vertex</td>
<td>± 40</td>
</tr>
<tr>
<td>Resolution</td>
<td>± 20</td>
</tr>
<tr>
<td>Signal model</td>
<td>± 20</td>
</tr>
</tbody>
</table>

Not correlated

Source Systematic uncertainty on m_H^γ [MeV]
Combined Mass Measurement

Electron and photon calibration systematics are correlated between analyses

Signal-strength parameters are left free

Photon calibration systematics are the most important

Final result compatible with Run-1 combined ATLAS+CMS measurement

Mass measured with relative uncertainty of 0.2%!

<table>
<thead>
<tr>
<th>Source</th>
<th>Systematic uncertainty in m_H [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM calorimeter response linearity</td>
<td>60</td>
</tr>
<tr>
<td>Non-ID material</td>
<td>55</td>
</tr>
<tr>
<td>EM calorimeter layer intercalibration</td>
<td>55</td>
</tr>
<tr>
<td>$Z \rightarrow ee$ calibration</td>
<td>45</td>
</tr>
<tr>
<td>ID material</td>
<td>45</td>
</tr>
<tr>
<td>Lateral shower shape</td>
<td>40</td>
</tr>
<tr>
<td>Muon momentum scale</td>
<td>20</td>
</tr>
<tr>
<td>Conversion reconstruction</td>
<td>20</td>
</tr>
<tr>
<td>$H \rightarrow \gamma\gamma$ background modelling</td>
<td>20</td>
</tr>
<tr>
<td>$H \rightarrow \gamma\gamma$ vertex reconstruction</td>
<td>15</td>
</tr>
<tr>
<td>e/γ energy resolution</td>
<td>15</td>
</tr>
<tr>
<td>All other systematic uncertainties</td>
<td>10</td>
</tr>
</tbody>
</table>
Summary

- The mass of the Higgs boson has been measured at the ATLAS detector in 36.1 fb\(^{-1}\) of 13 TeV data
- Results from the 4l and \(\gamma\gamma\) channels are compatible
- Combined Run-2 result shows a significant increase of precision over combined Run-1 result
- Combined Run-1+Run-2 result of \(m_H=124.97\pm0.24\) GeV agrees well with combined ATLAS-CMS result from Run-1
Backup
Muon Resolution and Scale
Full H4l Event Selection

Leptons and Jets Requirements

Electrons
- Loose Likelihood quality electrons with hit in innermost layer, $E_T > 7$ GeV and $|\eta| < 2.47$

Muons
- Loose identification $|\eta| < 2.7$
- Calo-tagged muons with $p_T > 15$ GeV and $|\eta| < 0.1$
- Combined, stand-alone (with ID hits if available) and segment tagged muons with $p_T > 5$ GeV

Jets
- anti-k_t jets with $p_T > 30$ GeV, $|\eta| < 4.5$ and passing pile-up jet rejection requirements

Event Selection

Quadruplet Selection
- Require at least one quadruplet of leptons consisting of two pairs of same flavour opposite-charge leptons fulfilling the following requirements:
 - p_T thresholds for three leading leptons in the quadruplet - 20, 15 and 10 GeV
 - Maximum of one calo-tagged or standalone muon per quadruplet
- Select best quadruplet to be the one with the (sub)leading dilepton mass (second) closest the Z mass
- Leading dilepton mass requirement: 50 GeV $< m_{12} < 106$ GeV
- Sub-leading dilepton mass requirement: $12 < m_{34} < 115$ GeV
- Remove quadruplet if alternative same-flavour opposite-charge dilepton gives $m_{\ell \ell} < 5$ GeV $\Delta R(\ell, \ell') > 0.10$ (0.20) for all same(different)-flavour leptons in the quadruplet

Isolation
- Contribution from the other leptons of the quadruplet is subtracted
- Muon track isolation ($\Delta R \leq 0.30$): $\Sigma p_T / p_T < 0.15$
- Muon calorimeter isolation ($\Delta R = 0.20$): $\Sigma E_T / p_T < 0.30$
- Electron track isolation ($\Delta R \leq 0.20$): $\Sigma E_T / E_T < 0.15$
- Electron calorimeter isolation ($\Delta R = 0.20$): $\Sigma E_T / E_T < 0.20$

Impact Parameter
- Apply impact parameter significance cut to all leptons of the quadruplet.
- For electrons: $|d_0 / \sigma_d| < 5$
- For muons: $|d_0 / \sigma_d| < 3$

Vertex
- Require a common vertex for the leptons

χ^2/ndof
- χ^2/ndof < 6 for 4\mu and < 9 for others.
Hγγ Reconstructed Categories

<table>
<thead>
<tr>
<th>Category</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>tH lep 0fwd</td>
<td>$N_{\text{lep}} = 1$, $N_{\text{jet}}^{\text{fwd}} \leq 3$, $N_b^{\text{tag}} \geq 1$, $N_f^{\text{fwd}} = 0$ ($p_T^{\text{fwd}} > 25$ GeV)</td>
</tr>
<tr>
<td>tH lep 1fwd</td>
<td>$N_{\text{lep}} = 1$, $N_{\text{jet}}^{\text{fwd}} \leq 4$, $N_b^{\text{tag}} \geq 1$, $N_f^{\text{fwd}} \geq 1$ ($p_T^{\text{fwd}} > 25$ GeV)</td>
</tr>
<tr>
<td>tH lep</td>
<td>$N_{\text{lep}} \geq 1$, $N_{\text{jet}}^{\text{fwd}} \geq 2$, $N_b^{\text{tag}} \geq 1$, $Z_{\ell\ell}$ veto ($p_T > 25$ GeV)</td>
</tr>
<tr>
<td>tH had BDT1</td>
<td>$N_{\text{lep}} = 0$, $N_{\text{jet}}^{\text{fwd}} \geq 3$, $N_b^{\text{tag}} \geq 1$, BDT$_{\text{BDT1}} > 0.92$</td>
</tr>
<tr>
<td>tH had BDT2</td>
<td>$N_{\text{lep}} = 0$, $N_{\text{jet}}^{\text{fwd}} \geq 3$, $N_b^{\text{tag}} \geq 1$, 0.83 < BDT$_{\text{BDT2}}$ < 0.92</td>
</tr>
<tr>
<td>tH had BDT3</td>
<td>$N_{\text{lep}} = 0$, $N_{\text{jet}}^{\text{fwd}} \geq 3$, $N_b^{\text{tag}} \geq 1$, 0.79 < BDT$_{\text{BDT3}}$ < 0.83</td>
</tr>
<tr>
<td>tH had BDT4</td>
<td>$N_{\text{lep}} = 0$, $N_{\text{jet}}^{\text{fwd}} \geq 3$, $N_b^{\text{tag}} \geq 1$, 0.32 < BDT$_{\text{BDT4}}$ < 0.79</td>
</tr>
<tr>
<td>tH had 4j1b</td>
<td>$N_{\text{lep}} = 0$, $N_{\text{jet}}^{\text{fwd}} = 4$, $N_b^{\text{tag}} = 1$ ($p_T^{\text{fwd}} > 25$ GeV)</td>
</tr>
<tr>
<td>tH had 4j2b</td>
<td>$N_{\text{lep}} = 0$, $N_{\text{jet}}^{\text{fwd}} = 4$, $N_b^{\text{tag}} \geq 2$ ($p_T^{\text{fwd}} > 25$ GeV)</td>
</tr>
<tr>
<td>VII dilep</td>
<td>$N_{\text{lep}} \geq 2$, 70 GeV < $m_{\ell\ell}$ < 110 GeV</td>
</tr>
<tr>
<td>VH lep High</td>
<td>$N_{\text{lep}} = 1$, $m_{c\tau} - 89$ GeV > 5 GeV, $p_T^\ell + E_T^{\text{miss}} > 150$ GeV</td>
</tr>
<tr>
<td>VH lep Low</td>
<td>$N_{\text{lep}} = 1$, $m_{c\tau} - 89$ GeV > 5 GeV, $p_T^\ell + E_T^{\text{miss}} < 150$ GeV, E_T^{miss} significance > 9 or $E_T^{\text{miss}} > 250$ GeV</td>
</tr>
<tr>
<td>VII MET High</td>
<td>150 GeV < E_T^{miss} < 250 GeV, E_T^{miss} significance > 9 or $E_T^{\text{miss}} > 250$ GeV</td>
</tr>
<tr>
<td>VII MET Low</td>
<td>80 GeV < E_T^{miss} < 150 GeV, E_T^{miss} significance > 8</td>
</tr>
<tr>
<td>jet BSM</td>
<td>$p_T^{j1} > 200$ GeV</td>
</tr>
<tr>
<td>VII had tight</td>
<td>60 GeV < m_{jj} < 120 GeV, BDT$_{\text{VH}} > 0.78$</td>
</tr>
<tr>
<td>VII had loose</td>
<td>60 GeV < m_{jj} < 120 GeV, 0.35 < BDT$_{\text{VH}} < 0.78$</td>
</tr>
<tr>
<td>VBF tight, high p_T^{j1}</td>
<td>$</td>
</tr>
<tr>
<td>VBF loose, high p_T^{j1}</td>
<td>$</td>
</tr>
<tr>
<td>VBF tight, low p_T^{j1}</td>
<td>$</td>
</tr>
<tr>
<td>VBF loose, low p_T^{j1}</td>
<td>$</td>
</tr>
<tr>
<td>ggH 2J BSM</td>
<td>≥ 2 jets, $p_T^{j1} > 200$ GeV</td>
</tr>
<tr>
<td>ggH 2J High</td>
<td>≥ 2 jets, $p_T^{j1} \in [120, 200]$ GeV</td>
</tr>
<tr>
<td>ggH 2J Med</td>
<td>≥ 2 jets, $p_T^{j1} \in [60, 120]$ GeV</td>
</tr>
<tr>
<td>ggH 2J Low</td>
<td>≥ 2 jets, $p_T^{j1} \in [0, 60]$ GeV</td>
</tr>
<tr>
<td>ggH 1J BSM</td>
<td>1 jet, $p_T^{j1} > 200$ GeV</td>
</tr>
<tr>
<td>ggH 1J High</td>
<td>1 jet, $p_T^{j1} \in [120, 200]$ GeV</td>
</tr>
<tr>
<td>ggH 1J Med</td>
<td>1 jet, $p_T^{j1} \in [60, 120]$ GeV</td>
</tr>
<tr>
<td>ggH 1J Low</td>
<td>1 jet, $p_T^{j1} \in [0, 60]$ GeV</td>
</tr>
<tr>
<td>ggH 0 J Fwd</td>
<td>0 jets, one photon with $</td>
</tr>
<tr>
<td>ggH 0 J Con</td>
<td>0 jets, two photons with $</td>
</tr>
</tbody>
</table>
$H \rightarrow \gamma\gamma$ Cross-checks

- BB: both photons in barrel
- BE: one photon in barrel, one in endcap
- EE: both photons in endcap
- CC: both photons converted
- UC: one photon converted, one not
- UU: both photons unconverted

$\sqrt{s} = 13$ TeV, 36.1 fb$^{-1}$
4l Fits in Final States