Search for Rare Decays of the Higgs Boson with ATLAS

Haifeng Li

Shandong University

On behalf of the ATLAS Collaboration

39th International Conference on High Energy Physics

July 4-11, 2018, Seoul

Outline

- Introduction
- Search for SM Higgs to dimuon (new results with 2017 data)
- \odot Search for SM Higgs to $Z\gamma$
- Summary

Introduction

• The discovery of the Higgs boson is a triumph of the SM.

 Important to look at all the possible decay channels of Higgs boson at the LHC

Higgs Boson Production at the LHC

ggF: dominant, larger initial state radiation from gluons

VBF: two forward jets with high mass and large rapitidy gap

VH: vector boson (lv, Il', qq')

ttH: many b-jets, leptons, E_T^{miss}

Higgs Boson Decays

 $m_H = 125 \text{ GeV}$

 $m_H=125 \text{ GeV}$

111H=123 GeV				
Higgs decays	BR [%]			
H o bb	57.8			
H o WW	21.4			
H o gg	8.19			
H o au au	6.27			
H o ZZ	2.62			
H o cc	2.89			
$H \rightarrow \gamma \gamma$	0.227			
$H o Z\gamma$	0.153			
$H o \mu\mu$	0.022			

Yellow Report 4

$H \rightarrow \mu\mu$ Analysis Strategy and Event Selections

- Data: LHC 2015-2017 pp collisions data, 79.8 fb⁻¹
- Dominant background is Drell-Yan process
- Dedicated categories for ggF and VBF
- Use analytic functions to model signal and background

ATLAS-CONF-2018-026

Event selections

- At least one primary vertex associated with at least two tracks
- Exactly have two muons. Leading muon p_T > 27 GeV

- E_T^{miss} < 80 GeV. Veto events with any b-jet
- Signal region: 110 $< m_{\mu\mu} <$ 160 GeV

Categorization - ggF

Categories make use of better S/\sqrt{B} for different regions

ullet Signal has more ISR than background. Signal tends to have large $p_T^{\mu\mu}$ than

background

(1) $p_T^{\mu\mu} <$ 15 GeV; (2) 15 $< p_T^{\mu\mu} <$ 50 GeV; (3) $p_T^{\mu\mu} >$ 50 GeV;

Categorization – VBF

Categories make use of better S/\sqrt{B} for different regions

- Multivariate analysis method is used for VBF category to get better sensitivity
- 14 variables are used to train a BDT (most sensitive ones: m_{ii} , $\Delta \eta_{ii}$, p_{μ}^{μ} , ΔR_{ii})
- Cut on BDT score to have VBF Tight (BDT > 0.885) and VBF Loose (0.685 < BDT < 0.885) ¹
- Events with BDT < 0.685 are classified as ggF-like events

9/24

¹ Chosen to retain signal efficiency used in the last publication PRL 119, 051802 (2017)

Categorization

BDT < 0.685

Event Yields

	ggF	VBF	all signal	Z+jets	Тор	Di-boson	Total bkg.	Data
Central low $p_{\rm T}^{\mu\mu}$	27.3	0.2	27.6	21800 ± 280	42 ± 3	50 ± 2	21900 ± 280	23318
Non-central low $p_{\rm T}^{\mu\mu}$	71.3	0.7	72.4	81320 ± 550	133 ± 5	209 ± 5	81660 ± 550	86793
Central medium $p_{\rm T}^{\mu\mu}$	51.3	1.9	54.1	18200 ± 260	335 ± 9	194 ± 5	18800 ± 260	19116
Non-central medium $p_{\rm T}^{\mu\mu}$	131.2	5.1	139.3	64300 ± 500	1090 ± 16	944 ± 11	66340 ± 500	68856
Central high $p_{\rm T}^{\mu\mu}$	38.4	4.3	45.7	7470 ± 170	697 ± 13	152 ± 4	8320 ± 170	8324
Non-central high $p_{\rm T}^{\mu\mu}$	86.4	10.3	104.4	23800 ± 320	2150 ± 22	703 ± 10	26600 ± 320	26624
VBF Loose	3.5	3.8	7.3	426 ± 12	45 ± 3	9 ± 1	480 ± 12	475
VBF Tight	1.7	5.8	7.5	181 ± 8	8 ± 1	2 ± 1	191 ± 8	170
Inclusive	411.0	32.0	458.4	217500 ± 910	4497 ± 32	2263 ± 17	224200 ± 910	233676

Signal event yields are not small

Signal Modelling

- ullet Signal $m_{\mu\mu}$ distributions are modelled using a Crystal Ball + Gaussian function
- The parameters are fixed when extracting signal strength

ATLAS-CONF-2018-026

Background Modelling

Background $m_{\mu\mu}$ distributions are modelled by

$$f \times [\mathrm{BW}(m_{\mathrm{BW}}, \Gamma_{\mathrm{BW}}) \otimes \mathrm{GS}(\sigma_{\mathrm{GS}}^{\mathrm{B}})](m_{\mu\mu}) + (1 - f) \times \mathrm{e}^{A \cdot m_{\mu\mu}}/m_{\mu\mu}^{3},$$

Non-central high $p_T^{\mu\mu}$

ATLAS Preliminary 7000 Non-central high p √s = 13 TeV. 79.8 fb y^2 /ndof = 37.5/48 H→uu analysis 5000 4000 3000 2000 1000 Data - fit σ (data)

VBF tight

ATLAS-CONF-2018-026

m_{uu} [GeV]

$H ightarrow \mu \mu$ Results with 79.8 fb $^{-1}$ Data ATLAS-CONF-2018-026

No obvious excess is observed around $m_H = 125 \text{ GeV}$

Upper limit on signal strength	Measurement of signal strength
Run-2 2.1 Expected 2.0	$\begin{array}{c c} & \hat{\mu} \\ \hline \text{Run-2} & 0.1^{+1.0}_{-1.1} \end{array}$

Link to the CONF note:

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2018-026/

Event Selections

Use 13 TeV pp collision data with 36.1 fb⁻¹

Z selections

- Select two same flavor opposite charge leptons (electrons or muons)
- For $Z \to \mu\mu$ candidates, correct muon momentum using FSR (include any EM cluster with $p_T > 1.5$ GeV and $\Delta R < 0.15$)

For all Z candidates, apply kinematic fit with Z mass constraint.

Photons

Isolated photon; Photon p_T > 15 GeV

Categorization

A BDT is used to select VBF-like events. The variables used by the BDT are m_{jj} , $\Delta \eta_{jj}$, p_{Tt} etc. $(p_{Tt} = 2|p_x^Z p_v^{\gamma} - p_x^{\gamma} p_v^Z|/p_T^{Z\gamma})$

Six regions:

- BDT > 0.82: VBF: VBF-enriched
- BDT < 0.82 and $p_T^{\gamma}/m_{Z\gamma} >$ 0.4: High relative p_T
- BDT < 0.82 and $p_T^{\gamma}/m_{Z\gamma}$ < 0.4 and p_{Tt} < 40 GeV, ee: ee low p_{Tt}
- BDT < 0.82 and $ho_T^{\gamma}/m_{Z\gamma}$ < 0.4 and ho_{Tt} < 40 GeV, $\mu\mu$: $\mu\mu$ low ho_{Tt}
- BDT < 0.82 and $p_T^{\gamma}/m_{Z\gamma}$ < 0.4 and p_{Tt} > 40 GeV, ee: ee high p_{Tt}
- ullet BDT < 0.82 and $p_T^\gamma/m_{Z\gamma}<$ 0.4 and $p_{Tt}>$ 40 GeV, $\mu\mu$: $\mu\mu$ high p_{Tt}

Signal Efficiency

JHEP10 (2017) 112

		01121 10 (2017) 112						
	gg	;F	V.	BF	W	H	Z.	Н
Category	$\epsilon [\%]$	f[%]	$\epsilon [\%]$	f[%]	$\epsilon [\%]$	f[%]	$\epsilon [\%]$	f[%]
VBF-enriched	0.25	30.5	6.5	67.5	0.34	1.3	0.24	0.6
High relative $p_{\rm T}$	1.1	71.5	2.6	14.3	4.0	8.3	4.1	5.3
ee high $p_{\mathrm{T}t}$	1.7	80.8	2.8	11.0	3.2	4.7	3.6	3.3
ee low $p_{\mathrm{T}t}$	7.1	93.2	3.6	4.1	3.7	1.5	4.2	1.1
$\mu\mu$ high $p_{\mathrm{T}t}$	2.2	80.4	3.6	11.3	4.1	4.8	4.2	3.1
$\mu\mu$ low $p_{\mathrm{T}t}$	9.2	93.4	4.7	4.1	4.6	1.5	4.8	1.0
Total efficiency (%)	21.5		23.8		20.2		21.0	
Expected events	3	5	3	.3	1.	.0	0.	7

• Signal selection efficiency varies from 20% to 24% for different processes

Signal and Background Modelling

Signal modelling: double-sided Crystal Ball function Background modelling:

• VBF-enriched and High relative p_T : use second-order Bernstein polynomial

Other categories: fourth-order Bernstein polynomial

$H ightarrow Z \gamma$ Results JHEP10 (2017) 112

- No obvious excess is found near $m_H = 125.09$ GeV region
- Upper limits for $\sigma(pp \to H) \cdot \mathcal{B}(H \to Z\gamma)$ is 6.6 times SM prediction (the expected limit on signal strength is 4.4)

Summary

- ATLAS has performed searches for $H o \mu\mu$ and $H o Z\gamma$ with LHC Run 2 data
- $H \rightarrow \mu\mu$ is using 79.8 fb⁻¹ data. $H \rightarrow Z\gamma$ is using 36.1 fb⁻¹ data.
- No significant excess is observed in data.
- For $H \to \mu\mu$, upper limit on signal strength is 2.1 at 95% C.L.. For $H \to Z\gamma$, upper limit on signal strength is 6.6 at 95% C.L..

Outlook

- ullet $H
 ightarrow \mu \mu$ is approaching SM sensitivity with LHC Run-2/Run-3 data
- ullet Need HL-LHC to reach the SM sensitivity for $H o Z\gamma$

$H \rightarrow \mu\mu$ Results from Last Publication

Data: 2015+2016 LHC *pp* collisions data. Integrated luminosity: 36.1 fb⁻¹

Phys. Rev. Lett. 119, 051802 (2017)
PRL Editors' Suggestion

Upper limit on signal strength					
	Observed	Expected			
Run-2	3.0	3.1			
Run-1&Run-2	2.8	2.9			

Measurement of signal strength

	$\hat{\mu}$
Run-2	-0.1 ± 1.5
Run-1&Run-2	-0.1 ± 1.4

$H \rightarrow Z\gamma$ Systematics

Sources	$H \rightarrow Z\gamma$	$X \rightarrow Z\gamma$
Luminosity [%]		
Luminosity	3.2	3.2
Signal efficiency [%	5]	
Modelling of pile-up interactions	0.02 - 0.03	< 0.01 – 0.2
Photon identification efficiency	0.7 - 1.7	2.0 - 2.6
Photon isolation efficiency	0.07 - 0.4	0.6 - 0.6
Electron identification efficiency	0.0 - 1.6	0.0 - 2.6
Electron isolation efficiency	0.0 - 0.2	0.0 - 3.5
Electron reconstruction efficiency	0.0 - 0.4	0.0 - 1.0
Electron trigger efficiency	0.0 - 0.1	0.0 - 0.2
Muon selection efficiency	0.0 - 1.6	0.0 - 0.7
Muon trigger efficiency	0.0 - 3.5	0.0 - 4.2
MC statistical uncertainty	-	1.2 - 2.0
Jet energy scale, resolution, and pile-up	0.2 - 10	-
Total (signal efficiency)	2.1-10	4.0 - 6.3
Signal modelling on σ_C	в [%]	
Electron and photon energy scale	0.6 - 3.5	1.0-4.0
Electron and photon energy resolution	1.1 - 4.0	4.0 - 30
Muon momentum scale	0.0 - 0.5	0.0 – 3.0
Muon ID resolution	0.0 - 3.7	0.0 - 2.0
Muon MS resolution	0.0 - 1.7	0.0 - 4.0
Signal modelling on μ_C	в [%]	
Electron and photon energy scale	0.1 - 0.2	0.2-0.6
Muon momentum scale	0.0 - 0.03	0.0-0.03
Higgs mass	0.2	-
Background modelling [F	Events]	
Spurious signal	1.7-25	0.005 - 6.1

JHEP10 (2017) 112

01121 10 (2017) 112	
Sources	
Total cross section and efficiency [9]	%]
Underlying event	5.3
ggF perturbative order	3.9
ggF PDF and $\alpha_{\rm s}$	3.2
VBF perturbative order	0.4
VBF PDF and $\alpha_{\rm s}$	2.1
WH (ZH) perturbative order	0.5(3.8)
$WH~(ZH)$ PDF and $\alpha_{\rm s}$	1.9 (1.6)
Interference	5.0
$B(H o Z\gamma)$	5.9
Total (total cross section and efficiency)	10
Category acceptance [%]	
ggF $H + 2$ -jets in VBF-enriched category	0.5 - 45
ggF BDT variables	0.2 - 15
ggF Higgs $p_{\rm T}$	8.4 - 22
PDF and $\alpha_{\rm s}$	0.2 - 2.0
Underlying event	2.9 - 25
Total (category acceptance)	9.5-49