Search for Di-Higgs Production at ATLAS

Andrew Mehta

ICHEP, Seoul, South Korea

6 July 2018

Higgs self coupling

Di-Higgs makes possible measurement of Higgs self coupling and hence fully reconstruct Higgs potential: $\phi \rightarrow v + h$

$$V(\phi) = \frac{1}{2}\mu^{2}\phi^{2} + \frac{1}{4}\lambda\phi^{4} = \lambda v^{2}h^{2} + \lambda vh^{3} + \frac{1}{4}\lambda h^{4}$$

mass term self coupling terms

Destructive interference between diagrams reduces cross section

- Measurements of $p_T(H)$ can enhance sensitivity to λ
- Rare process: 33.4 fb⁻¹ at 13 TeV

BSM Resonant Higgs Pair Production

Possible production process

- Various models expect a new particle decaying into a Higgs boson pair
- Can reconstruct each Higgs boson and di-Higgs resonance
- Randall-Sundrum graviton (spin 2) $G \rightarrow HH$
- Θ 2HDM CP-even heavy Higgs boson X \rightarrow HH

Which decays?

Analysis	$\gamma\gamma bb$	$\gamma \gamma W W^*$	$bb\tau\tau$	bbbb	Combined			
	Upper limit on the cross section [pb]							
Expected	1.0	6.7	1.3	0.62	0.47			
Observed	2.2	11	1.6	0.62	0.69			
Upper limit on the cross section relative to the SM prediction								
Expected	100	680	130	63	48			
Observed	$\bigcirc 220)$	$\boxed{1150}$	(160)	63	70			

b tagging

- Excellent light and charm rejection
- b-Hadrons decay with a lifetime of cτ ≈ 450μm
 Secondary vertex and lifetime-based ID
- Information combined using MVA algorithms

Efficiency measured in situ using $t\bar{t}$ events

$HH \rightarrow bbbb$

Data split into resolved and boosted regions

b jet triggers for resolved and fat-jet trigger for boosted

Resolved region (260 < M < 1400 GeV) has 4 clearly separated b tagged R=0.4 jets

Boosted region (800 < M < 3000 GeV) has 2 R=1.0 fat-jets each containing 1 or 2 tagged R=0.2 track-jets

HH → bbbb : Resolved Analysis

- Main multijet background taken from data using 4 jet, 2 tag events
- Weights applied by comparing 2 tag to 4 tag events in the sideband to account for different jet multiplicities and b-tagging efficiency
- Validation region used for checking background modelling

HH → bbbb : Boosted Analysis

- Multijet background taken from lower tagged samples in sideband
- Background modelling checked in the validation region
- 2,3,4 tagged signal regions

HH → bbbb

- No clear excess observed
- Largest deviation for resonant search is 3.6σ local significance at M=280 GeV (2.3σ global)
- Slightly tighter limits on nonresonant limits than expected.

Not resonant. 95% CL limits as ratio to SM

Observed	-2σ	-1σ	Expected	$+1\sigma$	$+2\sigma$
13.0	11.1	14.9	20.7	30.0	43.5

Tau tagging

- Hadronic τ id based on
 - collimated jet
 - 1 or 3 tracks
 - Both EM and Had energy
- In situ calibration using Z and events with τs
- Probability of misidentifying jets

as ts also measured from data

Good separation of taus from background

Data/MC scale factors

$HH \rightarrow bb\tau\tau$

11

- ullet $au_{lep} au_{had}$ and $au_{had} au_{had}$ channels analysed
- Major background from $t\bar{t} \rightarrow b\tau\nu b\tau\nu$ taken from Monte Carlo
- $t\bar{t}$ background with jets faking ts taken from data ($t_{lep}t_{had}$) or from Monte Carlo corrected for jet to t fake rate as measured from data ($t_{had}t_{had}$).
- Validate fake τ treatment by looking at same sign control regions
- Ψ Z o au au +heavy flavour Monte Carlo normalised on $Z o \mu \mu$ +heavy flavour control region
- Combine kinematic information using boosted decisions trees (next slide)

Same Sign $\tau_{lep}\tau_{had}$

Same Sign $\tau_{had}\tau_{had}$

HH \rightarrow bbττ: Boosted Decision Tree (BDT)

Combine masses, E_Tmiss + angular variables to discriminate signal and background

BDT score

Resonant e.g. G(500)

Andrew Mehta 06/07/2018

ICHEP 2018

each mass + nonresonant

ATLAS Preliminary

13 TeV 36.1 fb⁻¹

τ_{leo}τ_{had} SLT 2 b-tags

$HH \rightarrow bb\tau\tau$: Results

New

- No excess seen in either channel
- Rules out a wide parameter space in BSM models
- Non-resonant limit is the best individual channel to date

Non Resonant limit

		Observed	-1σ	Expected	$+1\sigma$
	$\sigma(HH \to bb\tau\tau)$ [fb]	57.3	49.9	69.2	96.3
$ au_{ m lep} au_{ m had}$	$\sigma/\sigma_{ m SM}$	23.5	20.5	28.4	39.5
	$\sigma(HH \to bb\tau\tau)$ [fb]	39.9	30.5	42.4	59.0
$ au_{ m had} au_{ m had}$	$\sigma/\sigma_{ m SM}$	16.4	12.5	17.4	24.2
Combination	$\sigma(HH \to bb\tau\tau)$ [fb]	30.9	26.0	36.0	50.1
Combination	$\sigma/\sigma_{ m SM}$	12.7	10.7	14.8	20.6

$HH \rightarrow bb \Upsilon$

- 2 photons +2 jets (1 or 2 b-tags)
- Parameterised fit to data distribution to obtain limits
- Set limits on resonant + non-resonant production
- Also set limits on Higgs self coupling
- No significant excess seen
- Observed non-resonant limit 22× SM (28 expected)

$HH \rightarrow \Upsilon WW^*$

- 2 photons +1 e or μ + 2 jets
- Parameterised fit to data distribution to obtain limits
- $p_T^{\gamma\gamma} > 100$ GeV for non-resonant and higher mass search
- No significant excess seen
- Observed non-resonant limit 230× SM (160 expected)

Summary

- Searches presented of di-Higgs production in 4 channels using 13 TeV data
- Best limit on non-resonant production is 13 × the SM
- Plenty more results to come → 3-4 × more data from Run II (2017+2018)

