

39th International Conference on High Energy Physics (ICHEP 2018)

4–11 July 2018, Seoul (Korea)

Searches for Light Higgs Bosons at CMS

Somnath Choudhury

(for the CMS collaboration)

Outline - LHC Run 2 Results

Light Higgs Searches @

- $H(125) \rightarrow aa \rightarrow 4\mu$
- $H(125) \rightarrow aa \rightarrow 2\mu 2\tau$
- $H(125) \rightarrow aa \rightarrow 2b2\tau$
- Light Scalar $\rightarrow \gamma \gamma$

Light Higgs Searches

Light Higgs

- General Two Higgs Doublet Model (2HDM)
 - 2 Higgs Doublets 5 Higgs bosons: h, H, A, H[±]
- Next-to-Minimal Supersymmetric Standard Model (NMSSM)
 - 2 Higgs Doublets + 1 singlet 7 Higgs bosons: h₁, h₂, h₃, a₁, a₂, H[±]

 The Higgs boson at 125 GeV can be identified as the next-to-lightest scalar, allowing to envisage a possible lighter particle

BR of "a" boson to SM particles depends on

- mass of the "a" boson
- models (types of the 2HDM)
- model parameters (tanβ)

Light Higgs @ LHC Run-1

https://twiki.cern.ch/twiki/bin/viewauth/CMSPublic/SummaryResultsHIG

- ✓ Searches performed in several final states
- ✓ No excess was found and results are interpreted in several 2HDM + S scenarios

 $H(125) \rightarrow aa \rightarrow 4\mu$

$H(125)\rightarrow aa\rightarrow 4\mu$

CMS PAS-HIG-16-035

SM background dominated by:

bb production

in which both b-quarks decay to a pair of muons via double semi-leptonic decay or resonances

small contributions from:

electroweak production of four muons such as $qq \rightarrow ZZ \rightarrow 4\mu$ and $qq \rightarrow Z \rightarrow 2\mu$, the latter where a second Z is radiated and decays to a muon pair

direct J/ψ pairs

Irreducible background, two production mechanisms SPS and DPS. Estimated with a combination of data (control region) and MC simulation.

2D background template include all SM processes

Points represent the data surviving all selection except the invariant mass cut

Triangle: observed event on the border of signal region, i.e. about 5 σ away from the exact diagonal

- ➤ 1 event is observed in signal region, with 0.74 ± 0.34 stat. ± 0.15 syst.events expected from SM backgrounds
- ▶ Upper limit at 95% CL on cross section times branching fraction times acceptance obtained for light boson masses in range 2m_µ < m_a < 2m_⊤

Result compared in the **NMSSM** scenario

CMS PAS-HIG-16-035

 $H(125) \rightarrow aa \rightarrow 2\mu 2\tau$

$H(125)\rightarrow aa\rightarrow 2\mu 2\tau$

- 4 final states scenarios studied: $\mu\mu \times (e\mu, e\tau_h, \mu\tau_h, \tau_h\tau_h)$
- target on non-boosted τ pairs,
 and requires 4 well reconstructed
 and isolated leptons
- ☐ main backgrounds (fake leptons or taus) estimated from data mostly Z+jets and WZ+jets events
- shape obtained from data in signal and ZZ background free control region with τ_h candidates of same sign (SS), τ_h isolation relaxed
- yield is estimated from data events that have one or two non-isolated τ_h
- ☐ final observable is dimuon mass distribution

$H(125)\rightarrow aa\rightarrow 2\mu 2\tau$

CMS-PAS-HIG-17-029 (accepted by JHEP)

most stringent limits are obtained in 2HDM+S type III at large $tan\beta$, where couplings to leptons are enhanced

Maximum-likelihood fit to the **dimuon invariant mass** distribution is performed

No significant excess observed above expected backgrounds in m_{uu} range from 15 to 62.5 GeV

Upper limits on BR(H \rightarrow aa \rightarrow 2 μ 2 τ) relative to SM Higgs production as low as 1.2x10⁻⁴ for m_a=60 GeV

 $H(125) \rightarrow aa \rightarrow 2b2\tau$

$H(125)\rightarrow aa\rightarrow 2b2\tau$

CMS-PAS-HIG-17-024

3 tau pair final states investigated: eτ_h, μτ_h, eμ

- T_hT_h discarded because of high trigger thresholds, ee and μμ discarded because of low BR and large backgrounds
- ☐ At least 1 b-tagged jet (p_T>20 GeV) in addition to the leptons:
- Most signal events only have one b-tagged jet because the generated b-jets are too soft
- Visible invariant mass of tau pair and b-jet less than 125 GeV as neutrinos in τ decays and soft b-jets not reconstructed
- 4 categories based on mbtt

Low $m_{b\tau\tau}$ categories with smaller background Highest $m_{b\tau\tau}$ category maximum background used as control region

Thresholds on kinematic cuts depend on the final state and category

Lowest m_{btt} category is the most sensitive with smallest background contribution

Results extracted by fits to di-tau visible mass distributions (to peak below m_a)

Uncertainties include e/μ , τ_h and b-jet identification, τ_h energy scale, $Z \rightarrow II$ bkg, jet $\rightarrow \tau_h$ fakes bkg and top quark pair bkg (normalisation), $Z \rightarrow \tau \tau$ shape

CMS-PAS-HIG-17-024 (submitted to PLB)

First time h→aa→2b2τ decays are probed: Large branching fraction (heavy b and τ mass),

and possible to trigger in ggF production

No significant excess of events observed

In the NMSSM, BR(h \rightarrow aa)>23% excluded at 95% CL for m_a~ 35 GeV

⇒ Most sensitive results so far at the LHC

Limits improved by several factors in the mass region 25 GeV < $\rm m_a$ < 62.5 GeV, and by more than an order of magnitude in 15 GeV < $\rm m_a$ < 25 GeV

This result

- Clean final state: 2 isolated photons
- Large smoothly-decreasing background (continuum)
 - Reducible (jet-jet and γ+jet with jet faking photon)
 - 2) Irreducible diphoton production
- Low-mass analysis specificity: Drell-Yan background, with electrons from the Z boson misidentified as photons
- Use of a stricter electron veto based on the pixel detector
- Include relic DY contribution in background model
- Mass resolution is crucial (calibrations, energy regression and vertex identification)
- Classification of diphoton events to gain in sensitivity

CMS PAS HIG-17-013

- ☐ Fits of S+B model over all event classes
- ☐ Each event weighted by the ratio S/(S+B) for its event class.
- Main systematic uncertainties:
- Photon identification BDT distribution shape, largest unc. 14.6% (VBF, 13 TeV)
- Per-photon energy resolution 13.7% (ggh, 8 TeV)
- Due to QCD scale variations 7.5% (ggh, 8 TeV)
- Trigger efficiency 5.5% (13 TeV)

- 8 TeV+13 TeV: minimum (maximum)
 limit on (σ×Br)/ (σ×Br)SM: 0.17(1.15)
 at m=103.0 (90.0) GeV
- Combined 8 TeV+13 TeV: σ×BR limit normalized to SM expectation (production processes assumed in SM proportion)
- There is an excess with respect to expected limits at m= 95.3 GeV

13 TeV: Excess ~2.9 σ local (1.47σ global) significance at m=95.3 GeV

8TeV+13 TeV: Excess ~2.8σ local (1.3σ global) significance

More data are required to ascertain the origin of this mild excess

Summary & Outlook

- ✓ Observed Higgs boson at mass 125 GeV may be part of an extended Higgs sector
- ✓ Many BSM models predicting new scalar and pseudoscalar neutral Higgs bosons (2HDM, MSSM, NMSSM ...) have been explored at CMS

 No signs for BSM in the Higgs boson sector yet...
- ✓ No signs of light Higgs bosons yet; but now exploration with larger data sample at LHC Run-2, other searches targeting the very low mass region is ongoing (results expected soon)
- ✓ Exciting times ahead of us with full LHC Run II data set