

Fiducial inclusive and differential Higgs boson cross sections at CMS

Vittorio Raoul Tavolaro on behalf of the CMS collaboration

ICHEP2018, COEX Seoul, 6 July 2018

Introduction

- Cross sections measured inclusively and differentially in fiducial **phase spaces**:
 - Extrapolation to full phase space minimized
 - Reproducibility in calculations for **future comparisons**
- Higgs inclusive measurements approaching precision era in Run2 → explore Higgs production differentially, in order to:
 - test SM predictions for **full spectra** of observables of interest
 - probe for **BSM hints**
- In this talk, selected results on 35.9fb⁻¹ of 2016 data from: $H \rightarrow ZZ^* \rightarrow 4\ell$ JHEP 11 (2017) 047 H \rightarrow bb PRL 120 (2018) 071802

NEW!

- Outline:
 - Combination of channels (HIG-17-028)
 - Overview of H→γγ results < NEW!
 - Interpretation in terms of coupling modifiers

NEW! >H→χχ

Zürich

submitted to JHEP

ETH Zürich

Η→γγ

- Fit to diphoton invariant mass
- Categorization in mass resolution
- <u>Most comprehensive and precise</u> set of measurements (>25 observables):

H kinematics, jets, b-jets, leptons, pT^{miss}, specific production modes

$\mathsf{H} \rightarrow \mathsf{Z} \mathsf{Z}^* \rightarrow 4\ell$

- Fit to m_{4l} mass distribution
- Categorization in lepton flavours
- Inclusive precision close to
 H→γγ
- Measurements as functions of 4 observables pT(H), y(H), N_{jets}, pT(j1)

H→bb

- Fit to m_{SD} mass distribution
- Measurement of <u>boosted</u> <u>inclusive H</u> production with categorization in jet substructure
- Combined in differential p_T(H) measurement

V.R.Tavolaro

Inclusive cross section

Η→γγ

 $H \rightarrow ZZ^* \rightarrow 4\ell$

> 1/3
> 1/4
$< 10 { m ~GeV}$
< 2.5

Lepton kinematics and isolation							
Leading lepton $p_{\rm T}$	$p_{\rm T} > 20 {\rm GeV}$						
Subleading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 10 \mathrm{GeV}$						
Additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7 (5) {\rm GeV}$						
Pseudorapidity of electrons (muons)	$ \eta < 2.5 (2.4)$						
Sum $p_{\rm T}$ of all stable particles within $\Delta R < 0.3$ from lepton	$< 0.35 p_{\rm T}$						
Event topology							
Existence of at least two same-flavor OS lepton pairs, where	e leptons satisfy criteria above						
Invariant mass of the Z ₁ candidate	$40 < m_{Z_1} < 120 \text{GeV}$						
Invariant mass of the Z ₂ candidate	$12 < m_{Z_2} < 120 \text{GeV}$						
Distance between selected four leptons	$\Delta R(\ell_i, \ell_j) > \overline{0.02}$ for any $i \neq j$						
Invariant mass of any opposite-sign lepton pair	$m_{\ell^+\ell'^-} > 4\mathrm{GeV}$						
Invariant mass of the selected four lentons	$105 < m_{\odot} < 140 {\rm GeV}$						

The fiducial cross section are measured to be

 $\hat{\sigma}_{\rm fid}(H \to \gamma \gamma) =$ $\hat{\sigma}_{\rm fid}(H \to 4l) =$

 $= 84 \pm 11(\text{stat}) \pm 7(\text{syst}) \text{ fb}$ no theory uncertainties, only experimental

in agreement with the theory predictions

 $\sigma_{\rm fid}^{\rm theory}(H \to \gamma \gamma) =$ $= 73 \pm 4$ fb

$$\sigma_{\rm fid}^{\rm theory}(H \to 4l) =$$

 $= 2.72 \pm 0.14$ fb

Combination

 Extrapolation to full phase space

Zürich

- Total cross section measured with ~11% uncertainty
- Precision still statistically limited

Combination results: $p_T(H)$, y(H)

рт(H)

~10-20% improvement from combination $H \rightarrow \gamma \gamma$ allows 30-40% precision up to 350GeV, $H \rightarrow$ bb contributes at high p_T

y(H)

probe of PDFs, production mode

30-50% precision across the spectrum

V.R.Tavolaro

Combination: N_{jets}, p_T(jet)

Zürich

N_{jets}

test of modelling of QCD radiation, production mechanism

high multiplicity bins

In the following, a **selection** of the vast campaign of measurements is shown

• Double-differential measurement as a function of $p_T(H)xN_{jets}$

• 9 kinematic bins, with uncertainties ranging between 35% and 60%

ETH Zürich

 \geq 1jet

 $p_{\rm T}^{\rm J} > 30 {\rm GeV}$

Characterization of the highest-pT jet produced in association with the H

• Spectra are measured with 50-70% uncertainty

ETH Zürich

 Measurements related to the second jet associated with H and to the dijet system $\geq 2jets$ $p_T^j > 30 \text{ GeV}$ $|\eta^j| < 4.7$

- Uncertainties in the range between 70 and 90%
- A set of the 2-jets observables is measured in the VBF-like phase space as well

Exclusive production processes

35.9 fb⁻¹ (13 TeV) CMS $\Delta\sigma_{fid}/\Delta N_{lepton}$ (fb) $H \rightarrow \gamma \gamma$ 10⁵ HX = VBF + VH + tĪH aMC@NLO Data, stat syst unc aaH amc@NLO, NNLOPS + HX Systematic uncertainty 10⁴ ggH aMC@NLO + HX 10³ ggH POWHEG + HX $\sigma_{\rm SM}(H \rightarrow \gamma \gamma)$ from CYRM-17-002 10² 10 1⊧ 10⁻¹ 0 >1 1 Ratio to prediction 6 0 >1 N_{lepton}

- H production is measured as a function of lepton and b-jet multiplicities and of pT^{miss}
- The total cross sections is measured for VHand ttH-enriched phase spaces

 $VH: N_{lep} = 1, p_T^{miss} > 100 \text{ GeV}$

 $t\bar{t}H: N_{lep} \ge 1, N_{b-jet} \ge 1$

 All measurements are found in agreement with the standard model predictions

- Variations of couplings not only affect total cross section and BR, but they **distort the shape of p_T(H)**
- Different models are provided by theorists to describe the shape distortions

The **combined** measurement of the $p_T(H)$ spectrum is used to set constraints on the coupling modifiers

- Results are dependent on the **assumptions** about BR under coupling variations, two scenarios studied:
 - 1. **BR freely floating** —> purely shape information

V.R.Tavolaro

6.7.2018

Zürich

- Results are dependent on the **assumptions** about BR under coupling variations, two scenarios studied:
 - 1. **BR freely floating** —> purely shape information
 - 2. **BR scaling with couplings** —> full knowledge from SM of Higgs decay modes

Scenario 2

- Run2 data sets allow extensive study of Higgs boson cross sections differentially and for phase spaces enriched in specific production mechanisms
- New measurements are reported using the $H \rightarrow \gamma\gamma$ channel alone and in **combination** with the $H \rightarrow ZZ^* \rightarrow 4\ell$ and the $H \rightarrow bb$ (high-p_T only)
- p_T(H) distribution provides a handle to set limits on coupling modifiers variations
- Precision on measurements is still largely statistically limited → improved results are expected from analysis of full Run2 data sets
- **No significant deviation** from SM Higgs boson is observed, inclusively and differentially

BACKUP

V.R.Tavolaro

Combination inputs: $p_T(H)$

 $\hat{\sigma}_{H \to b\bar{b}}^{ggH} (p_T(H) > 450 \text{ GeV}) = 74 \pm 48(\text{stat})^{+17}_{-10}(\text{syst})\text{fb}$

Combination inputs: N_{jets}

Combination inputs: p_T(jet)

0	1 1					1				
Phase space	Observable	Bin boundaries								
	$p_{\rm T}^{\gamma\gamma}$ (GeV)	0	15	30	45	80	120	200	350	∞
Baseline	N _{jet}	0	1	2	3	4	∞			
	$ y^{\gamma\gamma} $	0	0.15	0.3	0.6	0.9	2.5			
$n^{\gamma_1}/m_{\rm out} > 1/3$	$ \cos(heta^*) $	0	0.1	0.25	0.35	0.55	1			
$n_{T}^{\gamma_{2}}/m_{cor} > 1/4$	$p_{\rm T}^{\gamma\gamma}$ (GeV), $N_{\rm jet} = 0$	0	20	60	∞					
$ n^{\gamma} < 2.5$	$p_{\rm T}^{\gamma\gamma}$ (GeV), $N_{\rm jet} = 1$	0	60	120	∞					
$Iso_{ron}^{\gamma} < 10 \text{ GeV}$	$p_{\mathrm{T}}^{\gamma\gamma}$ (GeV), $N_{\mathrm{jet}} > 1$	0	150	300	∞					
Loogen (10 CC)	$N_{ m jet}^{ m b}$	0	1	2	∞					
	N _{lepton}	0	1	2	∞			\land		
	$p_{\mathrm{T}}^{\mathrm{miss}}$ (GeV)	0	100	200	∞					
1_iot	$p_{\mathrm{T}}^{j_1}$ (GeV)	0	45	70	110	200	00			
$\frac{1-jet}{2}$	$ y^{j_1} $	0	0.5	1.2	2	2.5				
$r_{i}^{j} > 20 C N r_{i}^{j} < 2 E$	$ \Delta \phi^{\gamma\gamma,j_1} $	0	2.6	2.9	3.03	π		$\langle \rangle$		
$p_{\rm T} > 50 {\rm GeV}, \eta^{j} < 2.5$	$ \Delta y^{\gamma\gamma,j_1} $	0	0.6	1.2	1.9	∞				
	$p_{T}^{j_2}$ (GeV)	0	45	90	~	\bigcirc			$\langle \rangle$	
	$ y^{j_2} $	0	1.2	2.5	4.7					
2-jets	$ \Delta \phi^{j_1,j_2} $	0	0.9	1.8	π	$\langle \rangle$				
Baseline + ≥ 2 jets	$\Delta \phi^{\gamma\gamma,j_1j_2}$	0	2.9	3.05	π					
$p_{\rm T}^j > 30 { m GeV}, \eta^j < 4.7$	$\overline{\eta}_{i_1 i_2} - \eta_{\gamma\gamma}$	0	0.5	1.2	∞	$\langle \rangle$				
	$m^{j_1j_2}$ (GeV)	0	100	150	450	1000	∞			
	$ \Delta \eta^{j_1,j_2} $	0	1.6	4.3	œ					
VBE-onriched	n^{j_2} (CeV)	0	45	90	~					
2-jots + $ \Lambda n i_1 i_2 > 35$	$ \Lambda d^{j_1,j_2} $	0	<u>19</u>	1.8	π					
$2 - jcts + \Delta t ^{2/2} > 5.5,$ $m^{j_1j_2} > 200 CoV$	$ \Delta \sigma \gamma j_1 j_2 $	0	29	3.05	π					
		0	2.7	0.00	71					

Z

ETH Zürich

Combination results

BR freely floating

BR scaling with couplings

ETH Zürich

Alternative scenario: BR fixed to SM values (as done in Bishara et al. PRL 118 (2017) 121801)

• Expected results from Asimov fit

• From Bishara, limits set on k_c in [-16,18] at 95%CL using 20fb⁻¹ at 8TeV from ATLAS

- Signal strengths provide measurements with best sensitivity, but short lifespan since:
 - assumptions on signal characteristics have to be made
 - non trivial (re-)interpretation as cross section due to complicate acceptance selection
- Differential fiducial cross sections:
 - Test SM predictions for **full spectrum of observables of interest**
 - Probe for hints of BSM physics
 - Different observables are sensitive to different Higgs properties
 - **Restriction to a phase space** as close as possible to the detector acceptance, simpler signal selection and categorization:
 - minimal theory dependence and extrapolation
 - improved longevity of the results

- Calorimetric energy resolution
- Vertex ID

- Backgrounds: irreducible $\gamma\gamma$, reducible γ -fake and fake-fake \rightarrow multivariate Photon ID to reject fakes
- 3 event categories defined using a relative mass resolution estimator, fully decorrelated from the mass itself to prevent shaping of m_{xx} distribution

$H \rightarrow \gamma \gamma$ mass resolution estimator

• Relative mass resolution estimator in $Z \rightarrow ee$ events

- Sensitive to photon position in the detector and calorimetric shower shape
- The red band shows the impact of the systematic uncertainty on the photon energy resolution

Zürich

• Photon identification BDT built with kinematic variables and isolations of photons as inputs

$H \rightarrow \gamma \gamma$ mass distributions

ETH Zürich

Fully parametric signal model from simulation

- Background model **data driven**:
 - background functional form treated as **discrete** nuisance parameter

a.u.

- Minimal **pre-selection**, similar to but tighter than trigger selection
- Photon ID input variables: shower shape variables, particle-flow isolations, kinematic of photon, median energy density (ρ)
- Pure sample of photons from $Z \rightarrow \mu\mu\gamma$ used for validation of multivariate photon ID

ETH Zürich

 $m_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\theta)}$

- Electro-magnetic calorimeter (ECAL) response:
 - corrected for change in time
 - inter-calibrated to be uniform in η/ϕ
 - adjustment of absolute scale
- Energy and its uncertainty corrected for local and global shower containment:
 - regression targeting Etrue/Ereco
- Scale vs time and resolution calibration: Z→ee peak used as reference
- **Corrected** energies and resolutions used in the analysis

Zürich

Vertex identification

$$m_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\theta)}$$

 Vertex assignment correct within 1 cm → negligible impact on mass resolution

- No ionization in the tracker for photons
- Multi-variate approach for vertex identification
 - exploit kinematic correlations and **track** distribution **imbalance**
 - direction of **conversion tracks**, when present
- Method validated on Z→µµ (𝑔+j for converted 𝑔) events, where vertex found after removing muon tracks

V.R.Tavolaro

- Very small branching fraction (1.2 10-4)
- Small background from ZZ and (reducible) from Z+X
- Two same flavour, opposite sign lepton pairs, reconstructed with excellent m₄/ resolution
- **No use** of matrix element discriminants, to reduce model dependence

• Signal + background fit to m₄ distribution

Lepton kinematics and isolation							
Leading lepton $p_{\rm T}$	$p_{\rm T} > 20 {\rm GeV}$						
Subleading lepton $p_{\rm T}$	$p_{\rm T} > 10 { m GeV}$						
Additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7 (5) {\rm GeV}$						
Pseudorapidity of electrons (muons)	$ \eta < 2.5 (2.4)$						
Sum $p_{\rm T}$ of all stable particles within $\Delta R < 0.3$ from lepton	$< 0.35 p_{\rm T}$						
Event topology							
Existence of at least two same-flavor OS lepton pairs, where leptons satisfy criteria above							
Invariant mass of the Z_1 candidate	$40 < m_{Z_1} < 120 \text{GeV}$						
Invariant mass of the Z_2 candidate	$12 < m_{Z_2} < 120 \text{GeV}$						
Distance between selected four leptons	$\Delta R(\ell_i, \ell_j) > 0.02$ for any $i \neq j$						
Invariant mass of any opposite-sign lepton pair	$m_{\ell^+\ell'^-} > 4\mathrm{GeV}$						
Invariant mass of the selected four leptons	$105 < m_{4\ell} < 140 { m GeV}$						

- Full response matrix in signal extraction
- More complex fiducial phase space definition

V.R.Tavolaro

- Largest branching ratio (58%) channel
- **Overwhelming background** from QCD production of two b jets (10⁷)
- Boosted H regime to reduce background (p_T>450 GeV)
 —> select one 'fat' jet, with two-prong structure
- Hadronic transverse energy (H_T) or jet p_T above thresholds
- **Double-b tagger** to identify signal jet: 'passing' and 'failing' region
- Soft-drop grooming of jet mass removes soft and wide-angle radiation
- $Z \rightarrow bb$ as SM candle, allows validation of the measurement

- QCD background shape estimated from events failing the double-b tag requirements
- Transfer factor R as a function of ρ and p_T of the jet

 $N_{pass}^{QCD} = R_{p/f}(\rho, p_T) N_{fail}^{QCD}$

- R determined simultaneously with signal extraction
- Simultaneous fit of $Z \rightarrow bb$ and $H \rightarrow bb$ signal strenghts

```
mass scale variable \rho = \log(m_{\rm SD}^2/p_{\rm T}^2)
```

$$\mu_{\rm Z} = 0.78 \pm 0.14(\text{stat})^{+0.19}_{-0.13}(\text{syst})$$
$$\mu_{\rm H} = 2.3 \pm 1.5(\text{stat})^{+1.0}_{-0.4}(\text{syst})$$

V.R.Tavolaro

٤-

<u>چ</u> –

ŧ-

<u>۾</u>

<u>۾</u>-

<u></u>=___

g_

ETH Zürich

 $b\bar{b}H$

tH

ttH

- Simplified template cross sections:
 - generalize production process to sub-process
 - measure cross sections in mutually exclusive regions of the phase space
 - several stages of partitioning, evolving with size of datasets
 - Pseudo-observables:
 - On-shell amplitudes described through a momentum expansion around physical poles
- Effective Field Theories:
 - Describe deformations of SM through bases of higher dimension operators (Warsaw, BSM primary bases)

ggF

(EW qqH)

VBF

(Run1-like)

VBF

+ had. V

(H + leptonic V)

VH

q ar q o W H

 $q\bar{q} \rightarrow ZH$

 $qg \rightarrow ZH$

$H \rightarrow \gamma \gamma$: simplified template cross sections ETH_{zurich}

 Stage-0 cross section ratios in the Higgs Simplified Template Cross Section framework, for profiled mH. The signal strength modifiers are constrained to be nonnegative.

$H \rightarrow ZZ^* \rightarrow 4I$: simplified template cross sections EIH zürich

Stage-0 cross section ratios in the Higgs Simplified Template Cross Section framework,

Signal process	$\mathcal{A}_{ ext{fid}}$	ϵ	f_{nonfid}	$(1+f_{\text{nonfid}})\epsilon$
$gg \rightarrow H$ (powheg)	0.398	0.592 ± 0.001	0.049 ± 0.001	0.621 ± 0.001
VBF (POWHEG)	0.445	0.601 ± 0.002	0.038 ± 0.001	0.624 ± 0.002
WH (POWHEG MINLO)	0.314	0.577 ± 0.002	0.068 ± 0.001	0.616 ± 0.002
ZH (POWHEG MINLO)	0.342	0.592 ± 0.003	0.071 ± 0.002	0.634 ± 0.003
ttH (powheg)	0.311	0.572 ± 0.003	0.136 ± 0.003	0.650 ± 0.004

$H \rightarrow WW^*(2|2v)$

19.4 fb⁻¹ (8 TeV)

- Broad signal distribution
- Backgrounds (WW, tt) from control regions
- Large non-diagonal distribution in response matrix

CMS

 Regularised unfolding through single value decomposition

p[⊣]_⊤ [GeV]

$H \rightarrow \gamma \gamma$: response matrices, p_T

ETH Zürich

$H \rightarrow \gamma \gamma$: response matrices, N_{jets}

CMS

ETH Zürich

cat 1

σ_m/ml_{decorr}

54

ETH Zürich

 Matrices showing the correlation between signal strengths across bins of the differential cross section measurements, for the diphoton transverse momentum (a) and the jet multiplicity (b)

- $p_T > 30$ (20) GeV, $p_T/m_{\chi\chi} > 1/3$ (1/4) for (sub)leading- p_T photon
- $|\eta| < 2.5$, removing 1.44< $|\eta| < 1.57$, electron veto
- either R₉>0.8, or charged hadron isolation < 20 GeV, or charged hadron isolation relative to p_T <0.3

	H/E	$\sigma_{\eta\eta}$	R9	photon iso.	tracker iso.
ECAL barrel; $R_9 > 0.85$	< 0.08	_	>0.5	—	—
ECAL barrel; $R_9 \leq 0.85$	< 0.08	< 0.015	>0.5	< 4.0	< 6.0
ECAL endcaps; $R_9 > 0.90$	< 0.08	_	>0.8	_	_
ECAL endcaps; $R_9 \leq 0.90$	< 0.08	< 0.035	>0.8	< 4.0	< 6.0

$$\hat{\sigma}_{fid} = 1.11^{+0.41}_{-0.35}(stat)^{+0.14}_{-0.10}(syst)^{+0.08}_{-0.02}(syst)$$
 fb

$$\sigma_{fid}^{theory} = 1.15^{+0.12}_{-0.13} \text{ fb}$$

6.7.2018

ETH Zürich

