

Constraints on CP-violating couplings of the Higgs boson using its decay to fermions in the CMS experiment

ICHEP2018 SEOUL XXXIX INTERNATIONAL CONFERENCE ON MIS

PHYSICS

Senka Đurić Kansas State University

Higgs quantum numbers

2

Higgs couplings, production and decay

V

V

f

production decay 00000000 HggH (a) 00000000 H 00000000 ttH H^0 t000000000 VBF (b) H $\frac{3}{W/Z}$ tΗ H^0 W Н WH/ZH (c) \mathbb{R}^H

Higgs couplings, production and decay

production decay 00000000 HggH (a) 00000000 Ŧ _ V H 00000000 ttH H^0 t000000000 VBF (b) HV $\overline{W/Z}$ tΗ 22 H^0 W W/ZWH/ZH (c) Н f \mathbb{R}^{H}

coupling	production	decay
Hgg	ggH	-
Hff	ttH, tH	H->bb, H-> ττ
HVV	VBF, VH	H->VV

ggH, ffH and VVH sensitivity

expected precision of spin and CP-mixture measurements:

								ui/(iv. 1	510.0501
Collider	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	$\gamma\gamma$	$\mu^+\mu^-$	target
E (GeV)	$14,\!000$	14,000	250	350	500	1,000	126	126	(theory)
\mathcal{L} (fb ⁻¹)	300	3,000	250	350	500	1,000	250		
spin- 2_m^+	$\sim \! 10\sigma$	$\gg 10\sigma$	$> 10\sigma$	$>10\sigma$	$> 10\sigma$	$> 10\sigma$			$>5\sigma$
VVH^{\dagger}	0.07	0.02	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$< 10^{-5}$
VVH^{\ddagger}	$4 \cdot 10^{-4}$	$1.2 \cdot 10^{-4}$	$7 \cdot 10^{-4}$	$1.1 \cdot 10^{-4}$	$4 \cdot 10^{-5}$	$8 \cdot 10^{-6}$	_	_	$< 10^{-5}$
VVH^{\diamond}	$7 \cdot 10^{-4}$	$1.3 \cdot 10^{-4}$	\checkmark	\checkmark	\checkmark	\checkmark	_	—	$< 10^{-5}$
ggH	0.50	0.16	_	_	_		_	_	$< 10^{-2}$
$\gamma\gamma H$	—	_	—	_	_	_	0.06	—	$< 10^{-2}$
$Z\gamma H$	—	\checkmark	_	_	_	_	_	_	$< 10^{-2}$
au au H	\checkmark	\checkmark	0.01	0.01	0.02	0.06	\checkmark	\checkmark	$< 10^{-2}$
ttH	\checkmark	\checkmark	_	_	0.29	0.08	_	_	$< 10^{-2}$
$\mu\mu H$	_	_	_	_	_	_	_	\checkmark	$< 10^{-2}$

[†] estimated in $H \to ZZ^*$ decay mode

[‡] estimated in $V^* \to HV$ production mode

 \diamond estimated in $V^*V^* \to H$ (VBF) production mode

ggH and ffH experimental measurements are more challenging than **VVH** measurements

the focus with current LHC data is on VVH measurement

arViv 1210 9261

VVH couplings and parameters

there are also other parametrizations

Anomalous couplings (a_i , Λ_i) are universal parameters of nature

- However it is more convenient to measure the effective cross-section ratios (f_{ai}) rather than the anomalous couplings themselves
 - ⇒ Measure fractions in defined convention with unique meaning along different channels

f_{a3} = fractional pseudoscalar cross section

- value 0 < |f_{a3}| < 1 would indicate CP violation, with a possible mixture of scalar and pseudoscalar states
- $f_{a3} = 1$ would indicate that the H boson is a pure pseudoscalar resonance

CMS HVV coupling measurements

Final state	Anomalous coupling HVV analysis sensitivity		Energy (lumi/fb ⁻¹)	reference	
	In production In decay				
VBF H(->4l), W(->jj)H(->4l), Z(->jj)H(->4l)	1	1	13 TeV (38.6 for VBF H, 35.9 for VH)	PLB 775 CMS_PAS-	5 (2017) 1, HIG_17_011
VH(->bb)	1	-	8 TeV (19.7)	=>	Combination:
Η -> WW, ZZ, Z γ *, γ * γ *	×	1	8 TeV (19.7) 7 TeV (5.1)	PRD 92 (2015) 012004, CMS_HIG_14_018	PLB 759 (2016) 672, CMS_HIG_14_035

VH(->bb) (Run1 data)

4

ee 1 TeV, 1000 /b

arXiv 1310.8361

Expected precision in $f_{a3}^{\rm VV}$

10

10⁻²

 10^{-3}

10-4

10⁻⁵

10⁻⁶

H->VV

VBF H

Å

ILC VH

Pp 14 TeV, 300 fb, 800 fb, 250 fb, 350 fb,

VH

Ą

The high mass of V* in VH makes it a powerful channel for constraining f_{a3}

The **interference contributions** to the BDT discriminant and m(VH) distributions are negligible and ignored in the VH channels.

Measurement is performed using 2D templates:

- BDT discriminant (to separate from background)
- m(VH): observable sensitive to kinematic features of pseudoscalar

=> Results are combined with H->VV

VH(->bb) + H(->VV) results (Run1 data)

The high mass of V* in VH makes it a powerful channel for constraining f_{a3}

• yields of signal events are expressed with two unconstrained parameters μ_V (VBF and VH production) and μ_F (ggH and ttH production)

 μ = observed signal yield/expected SM signal yield

- μ_V and μ_F are floating freely in the fit
 - sensitivity to anomalous couplings is in a difference in shape, not overall yield

=> Sensitivity at low f_{a3} dominated by ZH channel

⇒ no significant deviation from the SM (f_{a3} =0) ⇒ pure pseudoscalar (f_{a3} =1) excluded at 99.8% CLs

1 at 99.8% CLs

Sensitive observables

Single kinematic	
observable:	
m(VH),	

MELA package (Matrix Element Likelihood Approach): Using full kinematic

- Build discriminant for process A vs process B from ME bases probabilities
- Discriminant: ratio of probabilities
 - Distinguish contributions: SM, BSM, interference
- Optimal observable: $D = P_A / (P_A + P_B)$

Sensitive observables

H->4l results (Run1+Run2)

Result summary (Run1)

Measurements with and without assuming the SM ratio of the coupling strengths of the Higgs boson to top and bottom quarks (e.g. tyle I 2HDM)

Channel	Parameter	Expected	Observed	CL: (68%) [95%]	
		Correlated μ parameters			
$WH + H \rightarrow WW$	$f_{a3}^{\rm WW} \cos \phi_{a_3}$	0 (-0.0012, 0.0012) [-0.0027, 0.0027]	-0.0027 (-0.0053, -0.00	082)∪(0.00084, 0.0053)	
			[-0.0098, 0.0098]		
$ZH + H \rightarrow ZZ$	$f_{a3}^{ZZ}\cos\phi_{a_3}$	0 (-0.0014, 0.0014) [-0.0034, 0.0034]	0.0011 (-0.0028, 0.0029	9) [-0.0055, 0.0056]	
$VH + H \rightarrow VV$	$f_{a3}^{ZZ}\cos\phi_{a_3}$	0 (-0.00049, 0.00050) [-0.0011, 0.0011]	0.0012 (-0.0021, -0.000	44)∪(0.00047, 0.0021)	
			[-0.0033, 0.0034]		
	Uncorrelated μ parameters				
$WH + H \rightarrow WW$	$f_{a3}^{\rm WW} \cos \phi_{a_3}$	0 (0, 1) [0, 1]	-0.00088 (-0.46, 0.20) [0,1]	
$ZH + H \rightarrow ZZ$	$f_{a3}^{ZZ}\cos\phi_{a_3}$	0 (-0.20, 0.21) [-0.65, 0.66]	0.0067 (-0.13, 0.16) [-0	.42, 0.44]	
$VH + H \rightarrow VV$	$f_{a3}^{\rm ZZ}\cos\phi_{a_3}$	0 (-0.0060, 0.0062) [-0.44, 0.44]	0.0010 (-0.039, -0.0001	1)∪(0.00011, 0.043)	
			[-0.24, 0.25]		

Result summary (Run1+Run2)

Conclusions

Very sure that the Higgs Boson is spin-0 CP m

CP measurements: search for small deviations

Testing the CP nature of Higgs is one of the important tasks after its discovery

- Testing the HVV coupling structure
 - Pseudo-scalar coupling is expected to be subdominant
 - Pure pseudoscalar (J^{CP} =0⁻) hypothesis is excluded
 - No significant CP mixing effect is observed and limits are set on the CP-odd terms in the effective coupling approach
 - Now the focus is on search for small deviations
- Tree level couplings to quarks and leptons (prospects)
 - CP-even and CP-odd couplings induced at the same order
 - Experimental challenges for the test of the CP invariance

Backup

H->4l results

H->4l results

List of discriminants

PLB 775 (2017) 1

Table 3: Summary of three production categories in analysis of the $H \rightarrow 4\ell$ events. The discriminants \mathcal{D} based on the matrix element likelihood calculations are defined for each category of events as discussed in text. Three BSM models are considered in definition of the categories: $f_{a3} = 1$, $f_{a2} = 1$, $f_{\Lambda 1} = 1$, and $f_{\Lambda 1}^{Z\gamma} = 1$. Three observables (abbreviated as obs.) are listed for each analysis and for each category. The \mathcal{D}_{0h+} discriminant is used in the $f_{\Lambda 1}$ and $f_{\Lambda 1}^{Z\gamma}$ measurements to allow a two-parameter fit together with f_{a2} at a later time.

category	VBF 2 jet-tagged	VH hadronic-tagged	Untagged
target	$qq' VV \rightarrow qq' H \rightarrow (jj)(4\ell)$	$q\bar{q} \rightarrow \mathrm{VH} \rightarrow (jj)(4\ell)$	$H\to 4\ell$
selection	$\mathcal{D}_{2 ext{jet}}^{ ext{VBF}} ext{ or } \mathcal{D}_{2 ext{jet}}^{ ext{VBF,BSM}} > 0.5$	$egin{aligned} \mathcal{D}_{2 ext{jet}}^{ ext{ZH}} ext{ or } \mathcal{D}_{2 ext{jet}}^{ ext{ZH,BSM}} ext{ or } \ \mathcal{D}_{2 ext{jet}}^{ ext{WH}} ext{ or } \mathcal{D}_{2 ext{jet}}^{ ext{WH,BSM}} > 0.5 \end{aligned}$	not VBF-jets not VH-jets
f_{a3} obs.	$\mathcal{D}_{ ext{bkg}}, \mathcal{D}_{0-}^{ ext{VBF+dec}}, \mathcal{D}_{CP}^{ ext{VBF}}$	$\mathcal{D}_{ ext{bkg}},\mathcal{D}_{0-}^{V\!H+ ext{dec}},\mathcal{D}_{C\!P}^{V\!H}$	$\mathcal{D}_{ ext{bkg}}, \mathcal{D}_{0-}^{ ext{dec}}, \mathcal{D}_{CP}^{ ext{dec}}$
f_{a2} obs.	$\mathcal{D}_{ ext{bkg}} \mathcal{D}_{0h+}^{ ext{VBF+dec}}, \mathcal{D}_{ ext{int}}^{ ext{VBF}}$	$\mathcal{D}_{ ext{bkg}}, \mathcal{D}_{0h+}^{VH+ ext{dec}}, \mathcal{D}_{ ext{int}}^{VH}$	$\mathcal{D}_{ ext{bkg}}, \mathcal{D}_{0h+}^{ ext{dec}}, \mathcal{D}_{ ext{int}}^{ ext{dec}}$
$f_{\Lambda 1}$ obs.	$\mathcal{D}_{ ext{bkg}}, \mathcal{D}_{\Lambda 1}^{ ext{VBF+dec}}, \mathcal{D}_{0h+}^{ ext{VBF+dec}}$	$\mathcal{D}_{ ext{bkg}}, \mathcal{D}_{\Lambda 1}^{V\!H+ ext{dec}}, \mathcal{D}_{0h+}^{V\!H+ ext{dec}}$	$\mathcal{D}_{ ext{bkg}}, \mathcal{D}_{\Lambda 1}^{ ext{dec}}, \mathcal{D}_{0h+}^{ ext{dec}}$
$f_{\Lambda 1}^{Z\gamma}$ obs.	$\mathcal{D}_{ ext{bkg}}, \mathcal{D}_{\Lambda 1}^{Z\gamma, ext{VBF+dec}}, \mathcal{D}_{0h+}^{ ext{VBF+dec}}$	$\mathcal{D}_{ ext{bkg}}, \mathcal{D}_{\Lambda 1}^{Z\gamma,VH+ ext{dec}}, \mathcal{D}_{0h+}^{VH+ ext{dec}}$	$\mathcal{D}_{\mathrm{bkg}}, \mathcal{D}_{\Lambda 1}^{Z\gamma,\mathrm{dec}}, \mathcal{D}_{0h+1}^{\mathrm{dec}}$

Production × decay

Production-only

Decay-only

PLB 775 (2017) 1

Spin 2 measurements

The corresponding XVV amplitude is used to describe the $X \rightarrow ZZ$

and WW, as well as $gg \rightarrow X$, processes

$$\begin{split} A(X_{J=2}VV) &\sim \Lambda^{-1} \left[2c_{1}^{VV} t_{\mu\nu} f^{*1,\mu\alpha} f^{*2,\nu}{}_{\alpha}^{*} + 2c_{2}^{VV} t_{\mu\nu} \frac{q_{\alpha}q_{\beta}}{\Lambda^{2}} f^{*1,\mu\alpha} f^{*2,\nu\beta} \\ &+ c_{3}^{VV} t_{\beta\nu} \frac{\tilde{q}^{\beta} \tilde{q}^{\alpha}}{\Lambda^{2}} (f^{*1,\mu\nu} f^{*2}_{\mu\alpha} + f^{*2,\mu\nu} f^{*1}_{\mu\alpha}) + c_{4}^{VV} t_{\mu\nu} \frac{\tilde{q}^{\nu} \tilde{q}^{\mu}}{\Lambda^{2}} f^{*1,\alpha\beta} f^{*2}_{\alpha\beta} \\ &+ m_{V}^{2} \left(2c_{5}^{VV} t_{\mu\nu} \epsilon^{*\mu}_{V1} \epsilon^{*\nu}_{V2} + 2c_{6}^{VV} t_{\mu\nu} \frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}} (\epsilon^{*\nu}_{V1} \epsilon^{*\alpha}_{V2} - \epsilon^{*\alpha}_{V1} \epsilon^{*\nu}_{V2}) + c_{7}^{VV} t_{\mu\nu} \frac{\tilde{q}^{\mu} \tilde{q}^{\nu}}{\Lambda^{2}} \epsilon^{*}_{V1} \epsilon^{*}_{V2} \right) \\ &+ c_{8}^{VV} t_{\mu\nu} \frac{\tilde{q}^{\mu} \tilde{q}^{\nu}}{\Lambda^{2}} f^{*1,\alpha\beta} \tilde{f}^{*2}_{\alpha\beta} \\ &+ m_{V}^{2} \left(c_{9}^{VV} t^{\mu\alpha} \frac{\tilde{q}_{\alpha} \epsilon_{\mu\nu\rho\sigma} \epsilon^{*\nu}_{V1} \epsilon^{*\rho}_{V2} q^{\sigma}}{\Lambda^{2}} + c_{10}^{VV} t^{\mu\alpha} \frac{\tilde{q}_{\alpha} \epsilon_{\mu\nu\rho\sigma} q^{\rho} \tilde{q}^{\sigma} (\epsilon^{*\nu}_{V1} (q \epsilon^{*}_{V2}) + \epsilon^{*\nu}_{V2} (q \epsilon^{*}_{V1}))}{\Lambda^{4}} \right) \right], \quad (11)$$

Table 2: List of spin-two models with the production and decay couplings of an exotic X particle. The subscripts m (minimal couplings), h (couplings with higher-dimension operators), and b (bulk) distinguish different scenarios.

J ^P Model	$gg \rightarrow X$ Couplings	$q\overline{q} \rightarrow X$ Couplings	$X \rightarrow VV$ Couplings
2_m^+	$c_1^{ m gg} eq 0$	$ ho_1 eq 0$	$c_1^{ m VV}=c_5^{ m VV} eq 0$
2^+_{h2}	$c_{2}^{ m gg} eq 0$	$ ho_1 eq 0$	$c_{2}^{ m VV} eq 0$
2^+_{h3}	$c^{ m gg}_{3} eq 0$	$ ho_1 eq 0$	$c_3^{ m VV} eq 0$
2_h^+	$c_4^{ m gg} eq 0$	$ ho_1 eq 0$	$c_4^{ m VV} eq 0$
2_b^+	$c_{1_{\infty}}^{ m gg} eq 0$	$ ho_1 eq 0$	$c_1^{\mathrm{VV}} \ll c_5^{\mathrm{VV}} \neq 0$
2^{+}_{h6}	$c_{1}^{ m gg} eq 0$	$ ho_1 eq 0$	$c_{6}^{VV} \neq 0$
2^+_{h7}	$c_{1_{\infty}}^{ m gg} eq 0$	$ ho_1 eq 0$	$c_{7}^{ m VV} eq 0$
2_h^-	$c^{ m gg}_{8} eq 0$	$ ho_2 eq 0$	$c_8^{ m VV} eq 0$
2^{h9}	$c^{ m gg}_{8} eq 0$	$ ho_2 eq 0$	$c_{9-1}^{ m VV} eq 0$
2^{-}_{h10}	$c_8^{ m gg} eq 0$	$ ho_2 eq 0$	$c_{10}^{VV} \neq 0$

PRD 92 (2015) 012004

Comparison to ATLAS measurements

CMS:

Higgs production at LHC

22