

¹University of California San Diego (UCSD)

Searches for Higgs boson rare decays

Speaker : Raffaele Gerosa¹

On behalf of the CMS Collaboration

1

Higgs boson rare decays

 Measurements of Higgs couplings and properties in the main decay channel shows good compatibility with the SM predictions

03/07/18

CMS-HIG-17-031

Higgs to invisible searches

- In the SM, Higgs decays to invisible particles (neutrinos) only via $H \rightarrow ZZ^* \rightarrow 4v$ with BR of 0.1%
- We don't know enough about the SM Higgs \rightarrow plenty of room for couplings to a new hidden dark sector

03/07/18

Higgs \rightarrow inv. signatures

Signature: 2-jets with large $\Delta \eta$ and m(jj)

- Large $E_T^{miss} > 250 \text{ GeV}$
- $p_T(j_1) > 80 \text{ GeV}, p_T(j_2) > 40 \text{ GeV},$
- $|\Delta \eta(jj)| > 1$ and $\Delta \varphi(jj) < 1.5$
- Veto leptons and b-tagged jets

03/07/18

Higgs \rightarrow inv. signal extraction

- Signal extracted by fitting the m(jj) spectrum
- Main bkg: Z(vv)+jets and W+jets from both QCD and EW productions
- **Bkg estimation:** via dedicated control samples i.e. $Z(\mu\mu)$, Z(ee), $W(\mu v)$ and W(ev)

- Signal extracted by fitting the output of a BDT classifier
- Main bkg: ZZ, WZ and residuals from WW and top backgrounds
- **Bkg estimation:** via dedicated control samples i.e. ZZ(4I), WZ(3Iv)

03/07/18

- Signal extracted by fitting the p_T^{miss} spectrum
- Main bkg: Z(vv)+jets and W+jets
- **Bkg estimation:** via dedicated control samples i.e. $Z(\mu\mu)$, Z(ee), $W(\mu v)$, W(ev) and γ +jets

03/07/18

Raffaele Gerosa

Limits still two-order of magnitude weaker than BR(H \rightarrow ZZ* \rightarrow 4v)

Search for $H \rightarrow \mu^+\mu^-$

• First channel that will provide evidence for coupling of the Higgs to the 2nd fermion generation

Experimental signature

- **Clean**: two oppositely charged and isolated muons
- Additional jet activity, b-jets and p_T^{miss} used to distinguish between production modes

CMS Experiment at LHC. CERN ed: Tue May 31 09:22:03 2016 CEST

- background
- To increase S/B:

• Signal extracted by fitting the $m_{\mu\mu}$ spectrum \rightarrow tiny peak above a falling

• Exploit at best kinematic differences between S and B

• Exploit at best the evolution of the $m_{\mu\mu}$ resolution in the detector

Event classification

Events are first categorized according to kinematic properties:

BDT discriminant

- Input observables mostly uncorrelated with m_{µµ}
- Di-muon system: \mathbf{p}_{T} , $\Delta \eta$, $\Delta \phi \rightarrow \mathbf{separate ggH vs Z/\gamma^*}$
- If at least two jets: $\Delta \eta(jj)$ and $m_{jj} \rightarrow VBF$ -tag
- Other properties: N_{jets} , N_{bjets} , $p_T^{miss} \rightarrow suppress top bkg$

7-BDT categories used to distinguish between production modes — VBF is the most sensitive category

BDT categories are further breakdown according to the η of the forward muon to gauge the peak resolution

- Muon p_T resolution mostly evolve with η
- 3 η -regions: $|\eta| < 0.9$, $0.9 < |\eta| < 1.9$ and $1.9 < |\eta| < 2.4$

CMS-HIG-17-019

Upper limits on BR($H \rightarrow \mu \mu$)

In each of the 15 event categories

- Signal is extracted by fitting the $m_{\mu\mu}$ spectrum
- Background fit functions vary per-category
- True form for the background is unknown
- Functional form chosen in each category to \bullet minimise the bias on the signal strength

03/07/18

CMS-HIG-17-019

Combination of 7+8+13 TeV analyses performed

(assuming SM) is < 5.7 (5.1) x 10⁻⁴, 2.6 (1.9) x SM

• Analysis strategy: signal extracted by fitting the m($l\gamma$) spectrum \rightarrow tiny peak above a falling background

• Events classified to distinguish between production modes and to follow the evolution of the peak resolution

- **VBF category:** $N_{jets} \ge 2, \Delta \eta_{jj} > 3.5, m_{jj} > 500 \text{ GeV},$ $\Delta \phi(jj, \ell \ell \gamma) > 2.4$
- **Untagged categories:** defined according to the photon energy resolution evolution

*H*₁₂₅ acceptance x efficiency ~ 26%

Event selection

H₁₂₅ acceptance x efficiency 22-29%

Gain in sensitivity from categorisation ~ 18%

11

Upper limits on BR($H \rightarrow \ell \ell \gamma$)

- Signal is extracted by fitting the m_{eev} spectrum
- Background fit functions vary per-category
- True form for the background is unknown
- Functional form chosen to minimise the bias on the signal strength

• Results obtained assuming $m_{H} = 125 \text{ GeV}$

• *Motivation:* search for $H \rightarrow J/\psi\gamma$ decays used to couplings to the second generation of quarks

- Cons: very small decay rate \rightarrow few signal events expected given Run-II statistics
- **Pros:** looking at $J/\psi \to \mu\mu$ provides clean signature w.r.t. searches for $H \to cc$
- Main backgrounds: $Z/\gamma^* \rightarrow \mu\mu\gamma$ and $H \rightarrow \gamma^*\gamma \rightarrow \mu\mu\gamma$

Complementary with "standard" $H \rightarrow cc$ searches

- Selections: $\Delta R(\mu,\gamma) > 1$, $\Delta R(\mu\mu,\gamma) > 2$, $|\Delta \phi(\mu\mu,\gamma)| > 1.5$ and $3.0 < m(\mu\mu) < 3.2$ GeV
- Analysis strategy: despite the m($\mu\mu$) requirement, very similar to those of the H $\rightarrow\gamma^*\gamma \rightarrow \mu\mu\gamma$ search

Event classification

Very low signal rate \rightarrow production-mode or resolution based categories are not introduced

*H*₁₂₅ acceptance x efficiency ~ 22%

Decay	Category	Data	Signal	Background
	Production			-
	ggF		7.1×10^{-2}	0.2
	VBF		$3.5 imes 10^{-3}$	$9.4 imes10^{-3}$
${ m H} ightarrow { m J}/\psi ~\gamma$	ZH	279	$7.1 imes 10^{-4}$	$2.3 imes10^{-3}$
	W^+H		$6.0 imes10^{-4}$	$1.0 imes10^{-3}$
	W ⁻ H		$4.5 imes10^{-4}$	$1.3 imes10^{-3}$
	ttH		$2.7 imes10^{-4}$	$1.3 imes 10^{-3}$

Background refers to only $H \rightarrow \gamma^* \gamma \rightarrow \mu \mu \gamma$ contribution

Analysis strategy and results

- Extensive, on-going program at CMS searching for Higgs rare decays:
 - Probing couplings of the Higgs boson to 2nd generation of leptons and quarks
 - Searching for couplings of the Higgs boson to invisible particles
 - Searching for sign of BSM physics in loops (Z/ γ and J/ $\psi\gamma$ decays)

Summary

Backup slides

- Search for lepton-flavour-violation in Higgs decays in the $e\tau$, $\mu\tau$ channels
- Physics scenarios for LFV decays: composite Higgs, supers-symmetry, RS models, 2HDM ...etc...
- BR of τ -lepton to muons and electrons may be modified if LFV Higgs decays are predicted • Present τ -lepton decays measurements provide bounds on B(H $\rightarrow\mu\tau$) and B(H $\rightarrowe\tau$) to be < 10% • H \rightarrow µe not interesting because constrained by BR(µ \rightarrow eγ) to be < 10⁻⁹
- Event classification: according to the number of jets to distinguish between production modes

• Final states explored: $H \rightarrow \mu \tau_h$, $H \rightarrow e \tau_h$, $H \rightarrow \mu \tau_e$ and $H \rightarrow e \tau_\mu$. Same flavour lepton final-states are overwhelmed by Z+jets

Higgs LFV: final states

Higgs LFV: uncertainties

Systematic uncertainty Muon trigger/identification/isolation Electron trigger/identification/isolation Hadronic tau lepton efficiency b tagging veto

 $Z \rightarrow \mu\mu$, ee + jets background $Z \rightarrow \tau \tau$ + jets background W + jets background QCD multijet background WW, ZZ background tī background $W\gamma$ background Single top quark background

 $\mu \rightarrow \tau_{\rm h}$ background $e \rightarrow \tau_h$ background Jet $\rightarrow \tau_h$, μ , e background Jet energy scale $\tau_{\rm h}$ energy scale μ , e $\rightarrow \tau_{\rm h}$ energy scale e energy scale μ energy scale Unclustered energy scale

Renorm./fact. scales (ggH) [?] Renorm./fact. scales (VBF and VH) [? PDF + α_s (ggH) [?] PDF + α_s (VBF and VH) [?] Renorm./fact. acceptance (ggH) Renorm./fact. acceptance (VBF and V PDF + α_s acceptance (ggH) PDF + α_s acceptance (VBF and VH)

Integrated luminosity

	${ m H} ightarrow \mu au_{ m h}$	$H \rightarrow \mu \tau_e$	$H \to e \tau_h$	${ m H} ightarrow { m e} au_{\mu}$
L	2%	2%		2%
on		2%	2%	2%
	5%	—	5%	—
	2.0-4.5%	2.0-4.5%		2.0-4.5%
		10%⊕5%		10%⊕5%
	$10\%{\oplus}5\%$	$10\%{\oplus}5\%$	$10\%{\oplus}5\%$	$10\%{\oplus}5\%$
		10%		10%
		30%		30%
	5%⊕5%	5%⊕5%	5%⊕5%	5%⊕5%
	$10\%{\oplus}5\%$	$10\%{\oplus}5\%$	$10\%{\oplus}5\%$	$10\%{\oplus}5\%$
		$10\%{\oplus}5\%$	_	$10\%{\oplus}5\%$
	5%⊕5%	5%⊕5%	5%⊕5%	5%⊕5%
	25%			_
			12%	—
	30%⊕10%		30%⊕10%	—
	3–20%	3–20%	3-20%	3–20%
	1.2%		1.2%	—
	1.5%		3%	_
		0.1 – 0.5%	0.1 – 0.5%	0.1 – 0.5%
	0.2%	0.2%		0.2%
	$\pm 1\sigma$	$\pm 1\sigma$	$\pm 1\sigma$	$\pm 1\sigma$
		3.9	9%	
1		0.4	L %	
4		3.2	2%	
		2.1	%	
		-3.0% -	- +2.0%	
H)		-0.3% -	-+1.0%	
,		-1.5% -	- +0.5%	
		-1.5% -	-+1.0%	
		2.5	5%	

$H \rightarrow \mu \tau_h, \mu \tau_e$ results

$H \rightarrow \mu \tau_h, \mu \tau_e$ results

		Exp	ected limits (%)				
	0-jet	1-jet	2-jets	VBF	Combin		
$\mu \tau_{\rm e}$	< 0.83	<1.19	<1.98	<1.62	< 0.59		
$\mu \tau_{\rm h}$	< 0.43	< 0.56	< 0.94	< 0.58	< 0.29		
μτ			< 0.25				
		Obse	erved limits (%))			
	0-jet	1-jet	2-jets	VBF	Combin		
$\mu \tau_{\rm e}$	<1.30	<1.34	<2.27	<1.79	< 0.86		
$\mu \tau_{\rm h}$	< 0.51	< 0.53	< 0.56	< 0.51	< 0.27		
μτ		< 0.25					
		Best fit br	anching fraction	ns (%)			
	0-jet	1-jet	2-jets	VBF	Combin		
$\mu \tau_{\rm e}$	0.61 ± 0.36	0.22 ± 0.46	0.39 ± 0.83	0.10 ± 1.37	0.35 ± 0.01		
$\mu \tau_{\rm h}$	0.12 ± 0.20	-0.05 ± 0.25	-0.72 ± 0.43	-0.22 ± 0.31	-0.04 ± 0		
μτ			0.00 ± 0.12				

JHEP 06 (2018) 001

Raffaele Gerosa

21

$H \rightarrow e \tau_h, e \tau_e results$

$H \rightarrow e \tau_h, e \tau_e results$

		Expec	cted limits (%)				
	0-jet	1-jet	2-jets	VBF	Combin		
$\mathrm{e} au_{\mu}$	< 0.90	<1.59	<2.54	<1.84	< 0.6		
$e\tau_h$	< 0.79	<1.13	< 1.59	< 0.74	< 0.49		
$e\tau$			< 0.37				
		Obser	ved limits (%)				
	0-jet	1-jet	2-jets	VBF	Combin		
$e au_{\mu}$	<1.22	<1.66	<2.25	<1.10	< 0.7		
$e\tau_{h}$	< 0.73	< 0.81	< 1.94	< 1.49	< 0.72		
eτ			< 0.61				
		Best fit brar	nching fractions	s (%)			
	0-jet	1-jet	2-jets	VBF	Combin		
$\mathrm{e} au_{\mu}$	0.47 ± 0.42	0.17 ± 0.79	-0.42 ± 1.01	-1.54 ± 0.44	0.18 ± 0.00		
$\mathrm{e} au_{\mathrm{h}}^{'}$	-0.13 ± 0.39	-0.63 ± 0.40	0.54 ± 0.53	0.70 ± 0.38	0.33 ± 0		
$e\tau$			0.30 ± 0.18				

JHEP 06 (2018) 001

Upper limits on BR($H \rightarrow \mu \tau$) and BR($H \rightarrow e \tau$)

	Observed (expe	ected) limits (%)	Best fit branching fraction (%)		
	BDT fit	$M_{\rm col}$ fit	BDT fit	$M_{\rm col}$ fit	
$H \rightarrow \mu \tau$	<0.25 (0.25)%	<0.51 (0.49) %	0.00 ± 0.12 %	0.02 ± 0.20 %	
${ m H} ightarrow { m e} au$	<0.61 (0.37) %	<0.72 (0.56) %	$0.30 \pm 0.18~\%$	$0.23\pm0.24~\%$	

No excess compared to b-only prediction from SM

03/07/18

Translation on sounds for LFV Yukawa couplings

Raffaele Gerosa

24

VBF H_{inv} : additional material

03/07/18

CMS-HIG-17-023

Background prediction from control-regions

Background prediction performing a full b-only fit including also the SR

VBF H_{inv} : additional material

Validation of the systematic uncertainties on the Z/W ratio

03/07/18

Impact on the BR(H_{inv}) measurement

Source of uncertainty	Ratios	Uncertainty vs <i>m</i> _{jj}	Impact on $\mathcal{B}($			
	Theoretical unce	rtainties	•			
Ren. scale V+jets (EW)	$Z(\nu\nu)/W(\ell\nu)$ (EW)	9–12%	48%			
Ren. scale V+jets (QCD)	$Z(\nu\nu)/W(\ell\nu)$ (QCD)	9–12%	23%			
Fac. scale V+jets (EW)	$Z(\nu\nu)/W(\ell\nu)$ (EW)	2–7%	4%			
Fac. scale V+jets (QCD)	$Z(\nu\nu)/W(\ell\nu)$ (QCD)	2–7%	2%			
PDF V+jets (QCD)	$Z(\nu\nu)/W(\ell\nu)$ (QCD)	0.5–1%	< 1%			
PDF V+jets (EW)	$Z(\nu\nu)/W(\ell\nu)$ (EW)	0.5–1%	< 1%			
NLO EW corr.	$Z(\nu\nu)/W(\ell\nu)$ (QCD)	1–2%	< 1%			
	Experimental uncertainties					
Muon reco. eff.	$W(\mu\nu)/W(\ell\nu), Z(\mu\mu)/Z(\nu\nu)$	$\approx 1\%$ (per leg)	8%			
Ele. reco. eff.	$W(e\nu)/W(\ell\nu), Z(ee)/Z(\nu\nu)$	pprox 1% (per leg)	3%			
Muon id. eff.	$W(\mu\nu)/W(\ell\nu), Z(\mu\mu)/Z(\nu\nu)$	pprox 1% (per leg)	8%			
Ele. id. eff.	$W(e\nu)/W(\ell\nu), Z(ee)/Z(\nu\nu)$	pprox 1.5% (per leg)	4%			
Muon veto	$W(CRs)/W(\ell\nu), Z(\nu\nu)/W(\ell\nu)$	\approx 2.5 (2)% for EW (QCD)	7%			
Ele. veto	$W(CRs)/W(\ell\nu), Z(\nu\nu)/W(\ell\nu)$	$\approx 1.5 (1)\%$ for EW (QCD)	5%			
au veto	$W(CRs)/W(\ell\nu), Z(\nu\nu)/W(\ell\nu)$	\approx 3.5 (3)% for EW (QCD)	13%			
Jet energy scale	$Z(CRs)/Z(\nu\nu), W(CRs)/W(\ell\nu)$	$\approx 1 (2)\%$ for Z/Z (W/W)	2%			
Ele. trigger	$W(e\nu)/W(\ell\nu), Z(ee)/Z(\nu\nu)$	$\approx 1\%$	< 1%			
$p_{\rm T}^{\rm miss}$ trigger	All ratios	pprox 2%	18%			

Shape analysis based fitting the m(jj) spectrum

Background prediction from control-regions

03/07/18

performing a full b-only fit including also the SR

Counting experiment + shapes from MC

VBF H_{inv} : additional material

Shape analysis: background prediction from control-regions

Process		<i>m</i> _{ij} range in TeV							
	0.2–0.4	0.4–0.6	0.6–0.9	0.9–1.2	1.2–1.5	1.5–2.0	2.0–2.75	2.75–3.5	> 3.5
$Z(\nu\nu)$ (QCD)	9367 ± 394	5716 ± 256	3925 ± 184	1665 ± 84	675 ± 43	406 ± 26	151 ± 14	22.6 ± 3.6	7.5 ± 2.1
Z(u u) (EW)	202 ± 8	230 ± 10	$ 278 \pm 13$	203 ± 10	131 ± 8	115 ± 8	71.3 ± 6.6	$ 20.9 \pm 3.4$	11.6 ± 3.1
$W(\ell\nu)$ (QCD)	4786 ± 252	3046 ± 165	$ 2122 \pm 125 $	936 ± 58	361 ± 29	232 ± 19	79.3 ± 8.9	$ 13.4 \pm 2.8$	4.3 ± 1.5
$W(\ell \nu)$ (EW)	101 ± 15	118 ± 16	$ 135 \pm 18$	102 ± 13	61.4 ± 7.9	62.2 ± 7.9	39.9 ± 4.8	$ 13.3 \pm 1.8$	5.6 ± 1.4
Top-quark	206 ± 32	161 ± 25	$ 124 \pm 19$	60.7 ± 9.3	31.6 ± 6.1	18.3 ± 2.9	11.1 ± 1.8	$ 2.8 \pm 0.5$	0.9 ± 0.2
Dibosons	219 ± 39	158 ± 28	$ 119 \pm 21$	50.9 ± 9.1	19.5 ± 3.5	10.4 ± 1.8	2.8 ± 0.5	$ 1.4 \pm 0.3$	0.4 ± 0.1
Others	77.5 ± 19.5	51.5 ± 11.5	$ 43.8 \pm 10.7$	14.3 ± 2.9	6.9 ± 1.5	3.7 ± 0.8	2.5 ± 0.6	0.7 ± 0.3	0.3 ± 0.4
Total Bkg.	14960 ± 563	9482 ± 378	6738 ± 281	3032 ± 135	1286 ± 73	849 ± 48	358 ± 28	75.3 ± 9.8	$\boxed{29.9\pm7.2}$
Data	16181	10035	7312	3154	1453	919	411	88	29
Signal	591 ± 285	571 ± 232	566 ± 172	472 ± 131	$\boxed{307\pm64}$	344 ± 83	228 ± 40	90.3 ± 18.8	37.4 ± 9.1

Cut-and-count analysis: background prediction from control-regions

Process	Signal Region	Dimuon CR	Dielectron CR	Single-Muon CR	Single-Electron CR
$Z(\nu\nu)$ (QCD)	799 ± 72	-	-	-	-
$Z(\nu\nu)$ (EW)	275 ± 34	-	-	-	-
$Z(\ell\ell)$ (QCD)	-	90.1 ± 7.9	64.7 ± 5.8	26.8 ± 1.2	4.9 ± 0.2
$Z(\ell\ell)$ (EW)	-	32.7 ± 4.3	25.0 ± 3.4	5.9 ± 0.3	2.4 ± 0.2
$W(\ell\nu)$ (QCD)	497 ± 33	0.2 ± 0.2	0.8 ± 0.6	891 ± 31	533 ± 21
$W(\ell \nu)$ (EW)	145 ± 11	0.1 ± 0.1	-	416 ± 16	260 ± 11
Top-quark	43.7 ± 9.8	5.3 ± 1.6	3.7 ± 1.1	126 ± 22	83.1 ± 15.4
Dibosons	19.9 ± 6.1	2.6 ± 1.3	0.9 ± 0.5	23.5 ± 4.9	16.1 ± 4.1
Others	3.3 ± 2.6	-	-	25.6 ± 20.7	2.9 ± 2.9
Total Bkg.	1784 ± 97	131 ± 8	95.2 ± 5.9	1515 ± 34	902 ± 24
Data	2053	114	104	1512	914
Signal $m_{\rm H} = 125 {\rm GeV}$	851 ± 148	-	-	-	-

CMS-HIG-17-023

VBF H_{inv} : additional material

Hinv limits in case of deviations from SM couplings \rightarrow with 95% CL region, BR(H_{inv}) limit moves from 0.17 to 0.29 (observed limit)

CMS-HIG-17-023

Higgs portal of DM interactions: limit on the spin-independent DM-nucleon scattering cross section given $m_{DM} < m_H / 2$

ZH_{inv}: additional material

03/07/18

Selection	Requirement	Reject
N_ℓ	=2	WZ, VVV
n^{ℓ}	>25/20 GeV for electrons	OCD
PΤ	>20 GeV for muons	QCD
Z boson mass requirement	$ m_{\ell\ell} - m_Z < 15 (30) \text{GeV}$	WW, top quark
Jet counting	≤ 1 jet with $p_{\rm T}^{j} > 30 {\rm GeV}$	$Z/\gamma^* ightarrow \ell\ell$, top quark, VVV
$p_{\mathrm{T}}^{\ell\ell}$	>60 GeV	$\mathrm{Z}/\gamma^* o \ell \ell$
b tagging veto	CSVv2 < 0.8484	Top quark, VVV
τ lepton veto	$0 \tau_{\rm h}$ cand. with $p_{\rm T}^{\tau} > 18 {\rm GeV}$	WZ
$p_{\mathrm{T}}^{\mathrm{miss}}$	>100 GeV (130 GeV, training only)	$\mathrm{Z}/\gamma^* o \ell \ell$, WW, top quark
$\Delta \phi(ec{p}_{\mathrm{T}}^{ j}, ec{p}_{\mathrm{T}}^{ \mathrm{miss}})$	>0.5 rad	$\mathrm{Z}/\gamma^* ightarrow \ell\ell$, WZ
$\Delta \phi(ec{p}_{ ext{T}}^{\ell\ell}$, $ec{p}_{ ext{T}}^{ ext{miss}})$	>2.6 rad (omitted)	$\mathrm{Z}/\gamma^* o \ell \ell$
$ p_{\mathrm{T}}^{\mathrm{miss}} - p_{\mathrm{T}}^{-\ell\ell} $ / $p_{\mathrm{T}}^{\ell\ell}$	<0.4 (omitted)	$\mathrm{Z}/\gamma^* o \ell \ell$
$\Delta \bar{R}_{\ell\ell}$	< 1.8 (omitted)	WW, top quark
ZZ - WZ - Other bkg. Nonresonant - Drell-Yan - ZH(125) - Bkg. unc		
0.4 0.6 0.8 BDT classifie		

ZHinv: additional material

			Effec	ct (%)		Impact on the
Source of uncertainty	Signal	ZZ	WZ	NRB	DY	exp. limit (%)
* VV EW corrections		10	-4		_	14 (12)
* Renorm./fact. scales, VV		9	4			
* Renorm./fact. scales, ZH	3.5					
* Renorm./fact. scales, DM	5					
* PDF, WZ background			1.5	_		$\mathcal{O}(1)$
* PDF, ZZ background		1.5				$\angle (1)$
* PDF, Higgs boson signal	1.5					
* PDF, DM signal	1–2					
* MC sample size, NRB				5		
* MC sample size, DY					30	
* MC sample size, ZZ		0.1				1
* MC sample size, WZ			2			T
* MC sample size, ZH	1					
* MC sample size, DM	3					
NRB extrapolation to the SR				20		<1
DY extrapolation to the SR					100	<1
Lepton efficiency (WZ CR)			3			<1
Nonprompt bkg. (WZ CR)		—			30	<1
Integrated luminosity			2	.5		<1
* Electron efficiency			1	.5		
* Muon efficiency			-	1		
* Electron energy scale			1-	-2		
* Muon energy scale			1-	-2		
* Jet energy scale	1–3 (typ	pically	y antic	orrelated	d w/ yield)	1 (<1)
* Jet energy resolution		1 (ty	picall	y anticoi	rr.)	
* Unclustered energy ($p_{\rm T}^{\rm miss}$)	1–4 (typically anticorr.), strong in DY					
* Pileup	1	(typio	cally a	nticorrel	ated)	
* b tagging eff. & mistag rate				1		
* BDT: electron energy scale	1.1	2.9	2.6			
* BDT: muon energy scale	1.5	4.3	2.7			— (2)
* BDT: $p_{\rm T}^{\rm miss}$ scale	1.0	3.2	4.1			

Eur. Phy	ys. J. C	78 (201
----------	----------	------	-----

31

ggH_{inv} and V(qq)H_{inv}: additional material

Signal region selections

Variable	Selection	Target background		
Muon (electron) veto	$p_{\rm T} > 10 {\rm GeV}, \ \eta < 2.4(2.5)$	$Z(\ell\ell)$ +jets, $W(\ell\nu)$ +jets		
au lepton veto	$p_{\rm T} > 18 { m GeV}, \ \eta < 2.3$	$Z(\ell\ell)$ +jets, $W(\ell\nu)$ +jets		
Photon veto	$p_{\rm T} > 15 { m GeV}, \; \eta < 2.5$	$\gamma+{ m jets}$		
Bottom jet veto	CSVv2 < 0.8484, $p_{\rm T}$ > 15 GeV, $ \eta $ < 2.4	Top quark		
$p_{\mathrm{T}}^{\mathrm{miss}}$	>250 GeV	QCD, top quark, $Z(\ell \ell)$ +jets		
$\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{jet}},\vec{p}_{\mathrm{T}}^{\mathrm{miss}})$	>0.5 radians	QCD		
Leading AK4 jet $p_{\rm T}$ and η	$> 100{ m GeV}$ and $ \eta < 2.4$	All		
Le	ading AK8 jet Mono-V select	ion		
p_{T}	and η >250 GeV and $ \eta $	< 2.4		

	τ_2/τ_1	< 0.6
	Mass (m_{jet})	$65 < m_{jet} < 105 \text{GeV}$
-		

Z/γ and Z/W ratio theoretical uncertainties

Uncertainty source	Process (magnitude)	Correlation	
Fact. & renorm. scales (QCD)	$\begin{array}{l} Z \rightarrow \nu\nu/W \rightarrow \ell\nu \ (0.1-0.5\%) \\ Z \rightarrow \nu\nu/\gamma + \text{jets} \ (0.2-0.5\%) \end{array}$	Correlated between processes; and in $p_{\rm T}$	
$p_{\rm T}$ shape dependence (QCD)	$egin{aligned} & Z ightarrow u u / W ightarrow \ell u \ (0.4 - 0.1\%) \ & Z ightarrow u u / u + jets \ (0.1 - 0.2\%) \end{aligned}$	Correlated between processes; and in $p_{\rm T}$	
Process dependence (QCD)	$\begin{array}{l} Z \rightarrow \nu\nu/W \rightarrow \ell\nu \ (0.4-1.5\%) \\ Z \rightarrow \nu\nu/\gamma + jets \ (1.5-3.0\%) \end{array}$	Correlated between processes; and in $p_{\rm T}$	
Effects of unknown Sudakov logs (EW)	$Z \rightarrow \nu \nu / W \rightarrow \ell \nu \ (0 - 0.5\%)$ $Z \rightarrow \nu \nu / \gamma + jets \ (0.1 - 1.5\%)$	Correlated between processes; and in $p_{\rm T}$	
Missing NNLO effects (EW)	$Z \rightarrow \nu \nu \ (0.2 - 3.0\%)$ $W \rightarrow \ell \nu \ (0.4 - 4.5\%)$ $\gamma + \text{jets} \ (0.1 - 1.0\%)$	Uncorrelated between processes; correlated in $p_{\rm T}$	
Effects of NLL Sudakov approx. (EW)	$\begin{array}{l} Z ightarrow u u \ (0.2 - 4.0\%) \ W ightarrow \ell u \ (0 - 1.0\%) \ \gamma + ext{jets} \ (0.1 - 3.0\%) \end{array}$	Uncorrelated between processes; correlated in $p_{\rm T}$	
Unfactorized mixed QCD-EW corrections	$\begin{array}{l} Z \rightarrow \nu\nu/W \rightarrow \ell\nu \ (0.15-0.3\%) \\ Z \rightarrow \nu\nu/\gamma + \text{jets} \ (<0.1\%) \end{array}$	Correlated between processes; and in $p_{\rm T}$	
PDF	$\begin{array}{l} Z \rightarrow \nu\nu/W \rightarrow \ell\nu \ (0-0.3\%) \\ Z \rightarrow \nu\nu/\gamma + jets \ (0-0.6\%) \end{array}$	Correlated between processes; and in $p_{\rm T}$	

ggH_{inv} and V(qq)H_{inv}: additional material

03/07/18

Raffaele Gerosa

33

ggH_{inv} and V(qq)H_{inv}: additional material

03/07/18

Raffaele Gerosa

34

$H \rightarrow \mu \mu$: additional material

Index	BDT quantile	Max. muon $ \eta $	ggH	VBF	WH	ZH	ttH	Signal	Bkg./GeV	FWHM	Bkg. functional	S/\sqrt{B}
			[%]	[%]	[%]	[%]	[%]		@125GeV	[GeV]	fit form	@ FWHM
0	0 - 8%	$ \eta < 2.4$	4.9	1.3	3.3	6.3	31.9	21.2	3150.5	4.2	mBW ·B _{deg4}	0.12
1	8-39%	$1.9 < \eta < 2.4$	5.6	1.7	3.9	3.5	1.3	22.3	1327.5	7.3	mBW ·B _{deg4}	0.16
2	8-39%	$0.9 < \eta < 1.9$	10.3	2.8	6.5	6.4	5.2	41.1	2222.2	4.1	mBW · B _{deg4}	0.29
3	8-39%	$ \eta < 0.9$	3.2	0.8	1.9	2.1	3.5	12.7	775.9	2.9	mBW · B _{deg4}	0.17
4	39 - 61%	$1.9 < \eta < 2.4$	2.9	1.7	2.7	2.7	0.3	11.8	435.0	7.0	mBW · B _{deg4}	0.14
5	39 - 61%	$0.9 < \eta < 1.9$	7.2	3.3	6.1	5.2	1.3	29.2	955.9	4.1	mBW · B _{deg4}	0.31
6	39 - 61%	$ \eta < 0.9$	3.6	1.1	2.6	2.2	0.9	14.5	479.3	2.8	mBW · B _{deg4}	0.26
7	61 - 76%	$1.9 < \eta < 2.4$	1.2	1.5	1.8	1.7	0.2	5.2	146.6	7.6	mBW · B _{deg4}	0.11
8	61 - 76%	$0.9 < \eta < 1.9$	4.8	3.6	4.5	4.4	0.7	20.3	514.3	4.2	mBW · B _{deg4}	0.29
9	61 - 76%	$ \eta < 0.9$	3.2	1.6	2.3	2.1	0.6	13.1	319.7	3.0	mBW	0.28
10	76 - 91%	$1.9 < \eta < 2.4$	1.2	3.1	2.2	2.1	0.2	5.8	102.4	7.2	Sum Exp(n=2)	0.14
11	76 - 91%	$0.9 < \eta < 1.9$	4.4	8.7	6.2	6.0	1.1	20.3	363.3	4.2	mBW	0.34
12	76 - 91%	$ \eta < 0.9$	3.1	4.0	3.8	3.6	0.9	13.7	230.0	3.2	mBW ·B _{deg4}	0.34
13	91 - 95%	$ \eta < 2.4$	1.7	6.4	2.5	2.6	0.5	8.6	95.5	4.0	mBW	0.28
14	95 - 100%	$ \eta < 2.4$	2.0	19.4	1.5	1.4	0.7	13.7	82.4	4.2	mBW	0.47
overall			59.1	61.1	51.8	52.3	49.2	253.3	12961.5	3.9		

At low BDT score \rightarrow best categories are those for which the peak resolution is better (central muons)

At high BDT score — not eta-categories but sensitivity larger because of smaller background (VBF-tag)

$H \rightarrow \mu \mu$: additional material

Modelled with a sum-of-three Gaussians All categories summed by weighting for S/(S+B)

CMS-HIG-17-019

p-value of the b-only hypothesis given the observed data and the possible presence of a signal at a given m_H

p-value obs. (exp.) is about 1σ for m_H = 125 GeV

03/07/18

$H \rightarrow \gamma^* \gamma \rightarrow \mu \mu \gamma$ categories

Category	${ m e^+e^-\gamma}$	$\mu^+\mu^-\gamma$
Lepton tag	Additional electron ($p_{\rm T} > 7 {\rm GeV}$) or muon ($p_{\rm T} > 5 { m GeV}$)
Dijet tag	At least 2 jets required	At least 2 jets required
Boosted	$p_{\rm T}({ m ee}\gamma) > 60{ m GeV}$	$p_{\rm T}(\mu\mu\gamma) > 60{ m GeV}$
Untagged 1	Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 1.4442$ $R_9 > 0.94$	Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 2.1$ and one lepton $0 < \eta < 0.9$ $R_9 > 0.94$
Untagged 2	Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 1.4442$ $R_9 < 0.94$	Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 2.1$ and one lepton $0 < \eta < 0.9$ $R_9 < 0.94$
Untagged 3	Photon $0 < \eta < 1.4442$ At least one lepton $1.4442 < \eta < 2.5$ No requirement on R_9	Photon $0 < \eta < 1.4442$ Both leptons in $ \eta > 0.9$ or one lepton in $2.1 < \eta < 2.4$ No requirement on R_9
Untagged 4	Photon 1.566 $< \eta < 2.5$ Both leptons $0 < \eta < 2.5$ No requirement on R_9	Photon 1.566 $< \eta < 2.5$ Both leptons $0 < \eta < 2.4$ No requirement on R_9

arXiv:1806.05996v1

$H \rightarrow Z\gamma \rightarrow ee\gamma$ categories

Category	$\mathrm{e^+e^-}\gamma$	$\mu^+\mu^-\gamma$
Lepton tag	Additional electron ($p_{\rm T} > 2$	(GeV) or muon ($p_{\rm T} > 5 {\rm GeV}$)
Dijet tag	At least 2 jets required	At least 2 jets required
Boosted	$p_{\rm T}({\rm ee}\gamma) > 60{ m GeV}$	$p_{\rm T}(\mu\mu\gamma) > 60{ m GeV}$
Untagged 1	Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 1.4442$ $R_9 > 0.94$	Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 2.1$ and one lepton $0 < \eta < 0.9$ $R_9 > 0.94$
Untagged 2	Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 1.4442$ $R_9 < 0.94$	Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 2.1$ and one lepton $0 < \eta < 0.9$ $R_9 < 0.94$
Untagged 3	Photon $0 < \eta < 1.4442$ At least one lepton $1.4442 < \eta <$ No requirement on R_9	Photon $0 < \eta < 1.4442$ 2.5 Both leptons in $ \eta > 0.9$ or one lepton in $2.1 < \eta < 2.4$ No requirement on R_9
Untagged 4	Photon 1.566 $< \eta < 2.5$ Both leptons $0 < \eta < 2.5$ No requirement on R_9	Photon 1.566 $< \eta < 2.5$ Both leptons $0 < \eta < 2.4$ No requirement on R_9

arXiv:1806.05996v1

$H \rightarrow Z\gamma \rightarrow \mu\mu\gamma$ categories

Category	$\mathrm{e^+e^-}\gamma$	$\mu^+\mu^-\gamma$		
Lepton tag	Additional electron ($p_{\rm T} > 7 {\rm Ge}$	V) or muon ($p_{\rm T} > 5 \text{GeV}$)		
Dijet tag	At least 2 jets required	At least 2 jets required		
Boosted	$p_{\rm T}({ m ee}\gamma) > 60{ m GeV}$	$p_{\mathrm{T}}(\mu\mu\gamma) > 60\mathrm{GeV}$		
Untagged 1	Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 1.4442$ $R_9 > 0.94$	Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 2.1$ and one lepton $0 < \eta < 0.9$ $R_9 > 0.94$		
Untagged 2	Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 1.4442$ $R_9 < 0.94$	Photon $0 < \eta < 1.4442$ Both leptons $0 < \eta < 2.1$ and one lepton $0 < \eta < 0.9$ $R_9 < 0.94$		
Untagged 3	Photon $0 < \eta < 1.4442$ At least one lepton $1.4442 < \eta < 2.5$ No requirement on R_9	Photon $0 < \eta < 1.4442$ Both leptons in $ \eta > 0.9$ or one lepton in $2.1 < \eta < 2.4$ No requirement on R_9		
Untagged 4	Photon 1.566 $< \eta < 2.5$ Both leptons $0 < \eta < 2.5$ No requirement on R_9	Photon 1.566 $< \eta < 2.5$ Both leptons $0 < \eta < 2.4$ No requirement on R_9		

arXiv:1806.05996v1

$H \rightarrow Z\gamma \rightarrow ee\gamma$ and $\mu\mu\gamma$ categories

