

Observation of Top Quark Pair Production in Association with a Higgs Boson at CMS

Carmen Diez Pardos (DESY) 7 July 2018

Top-Higgs coupling: the hunt for $t\bar{t}H$

Best direct probe of the top-Higgs Yukawa coupling, vital step towards verifying the SM nature of the Higgs boson

- Top quark is the most strongly-coupled SM fermion $(y_t \sim 1)$
- Direct measurement of y_t in tTH production:
 - gluon-gluon fusion: assumes no BSM coupling
- y_t in tH production: access to sign of the coupling (\rightarrow Talk by B. Stieger)

Top quark \times Higgs decay channels

- Challenges: $\sigma_{t\bar{t}H} \approx 0.5$ pb, $\sigma_{t\bar{t}} \approx 830$ pb @13 TeV
 - Crucial to understand $t\bar{t}{+}X~(X=b\bar{b},\,W,\,Z)$
 - Large combinatorics of leptons and jets from top quark decays
- Exploiting all tt decay channels and Higgs decays to
 - bottom quarks \rightarrow large BR, large background contributions (\rightarrow Posters E31, E32)
 - W, Z bosons, taus \rightarrow smaller production rate, lower backgrounds (\rightarrow Poster E28)
 - $\bullet~{\rm photons} \rightarrow {\rm clean}$ final state, very small rate

مووووووو

$t\bar{t}H(b\bar{b})$ Production

- Large ${\cal B}(H\to b\bar{b}),$ access to coupling 3rd generation quarks
- Challenging final state
 - Huge combinatorics in event reconstruction
 - $\bullet~\mbox{Poor}~\mbox{H} \to b\bar{b}$ mass resolution
 - Large $t\bar{t} + b\bar{b}$ background of $\mathcal{O}(10)$ pb with associated large theory uncertainties: from simulation
- Search channels
 - Leptonic tt: higher purity
 - Fully-hadronic tt : higher rate

$t\bar{t}H(b\bar{b})$: **dilepton** $t\bar{t}$ channel arXiv:1804.03682, sub. to JHEP

- $\bullet\,\geq$ 4j, 3b: BDT separating signal and inclusive $t\overline{t}+jets$ background
- \geq 4j, \geq 4b: low/high BDT sub-categories + Matrix Element Method (MEM) separating against t \bar{t} + $b\bar{b}$ background

$t\bar{t}H(b\bar{b})$: lepton+jets $t\bar{t}$ channel arXiv:1804.03682, sub. to JHEP

- Deep Neural Network (DNN) per jet category: multi-classification as signal or any of 5 tt
 t
 + jets bkgs. (tt
 + bb
 , tt
 + 2b, tt
 + b, tt
 + cc
 , tt
 + LF)
- Final discriminant: DNN output of chosen process node

C. Diez Pardos

ttH(bb) Leptonic: Results

35.9 fb⁻¹ (13 TeV) 35.9 fb⁻¹ (13 TeV) Events / Bin смѕ CMS Data 10⁵ Background syst Signal (µ = 0.72) stat SM $(\mu = 1)$ 10 Single-lepton 0.84 +0.52 +0.27 +0.44 10³ 10² 10 -0.24 +1.21 +0.63 +1.04 -1.12 -0.60 -0.95 Dilepton Data / Bkg. 1.4 1.2 1.0 0.8 0.72 +0.45 +0.24 +0.38 Combined 0.6 -2.5 -2.0 -0.5 -1.5 -2 0 2 6 Pre-fit expected log (S/B) Best fit $\mu = \sigma/\sigma_{SM}$ at m_H = 125 GeV

Best-fit $\mu = 0.72^{+0.45}_{-0.45}$, at 1.6 (2.2) σ obs. (exp.) significance

arXiv:1804.03682, sub. to JHEP

ttH(bb) Leptonic: Results

35.9 fb⁻¹ (13 TeV) 35.9 fb⁻¹ (13 TeV) Events / Bin CMS CMS Data 10⁵ Background Signal ($\mu = 0.72$) stat syst SM $(\mu = 1)$ 10 0.84 +0.52 +0.27 +0.44 Single-lepton 10³ 10² 10 -0.24 +1.21 +0.63 +1.04 -1.12 -0.60 -0.95 Dilepton Data / Bkg. 1.4 1.2 1.0 0.8 0.72 +0.45 +0.24 +0.38 Combined 0.6 -2.5 -2.0 -1.5 -1.0 -0.5 0 2 -2 Pre-fit expected log (S/B) Best fit $\mu = \sigma/\sigma_{SM}$ at $m_{H} = 125 \text{ GeV}$

Best-fit $\mu = 0.72^{+0.45}_{-0.45}$, at 1.6 (2.2) σ obs. (exp.) significance

• Limited by $t\bar{t} + HF$ and b-tagging uncertainties

07.07.2018

arXiv:1804.03682, sub. to JHEP

$t\bar{t}H(b\bar{b})$ Hadronic

- \geq 7 jets, \geq 3 b-tagged jets, $H_{\rm T}$ > 500 GeV, no leptons
- Events categorised by number of jets and b-tagged jets
- Dominant background: QCD-multijet production
 - Shape from low b-tag multiplicity control region in data
 - Rate from final fit to data

$t\bar{t}H(b\bar{b})$

$t\bar{t}H(b\bar{b})$ hadronic

arXiv:1803.06986, sub. to JHEP

- Final discriminant: MEM (discriminate ttH signal and tt + bb)
- $\bullet\,$ Also performs well against the $t\overline{t}+LF$ jets and QCD multijets backgrounds

$t\bar{t}H(b\bar{b})$ hadronic

arXiv:1803.06986, sub. to JHEP

- Final discriminant: MEM (discriminate ttt signal and tt + bb)
- $\bullet\,$ Also performs well against the $t\overline{t}+LF$ jets and QCD multijets backgrounds

Best-fit $\mu = 0.9^{+1.5}_{-1.5}$, upper 95% C.L. limit 3.8 (3.1) obs. (exp.) × SM

• Major systematic uncertainties: Multijet estimation, $t\bar{t} + HF$ prediction, b-tagging and JES etc.

C. Diez Pardos

07.07.2018

ttH multilepton

arXiv:1803.05485, sub. to JHEP

- Multilepton final states: Higgs decay to W⁺W⁻, ZZ, and au au
- Events categorised based on number of leptons and τ_h candidates

- 1 ℓ + 2 τ_h , 2 same-sign ℓ + 0, 1 τ_h , 3 ℓ + 0, 1 τ_h , 4 ℓ
- Additional requirements on jets, b-tagged jets
- Major backgrounds
 - $\bullet~$ Irreducible: $t\overline{t}+V$ and diboson, predicted from simulation and control regions
 - $\bullet\,$ Reducible: non-prompt leptons in $t\bar{t}+jets$ events, estimated from data
 - Large t $\overline{\mathbf{t}}$ + fake au_h for 1 ℓ + 2 au_h
- BDT and MEM discriminants to separate signal from backgrounds

tTH multilepton

tTH multilepton: analysis strategy

arXiv:1803.05485, sub. to JHEP

- Event categorisation in lepton flavor, and b-jet multiplicity
- Discriminating variables
 - MEM against tTZ (2 ℓ same-sign + 1 τ_h)
 - Yield in 4-leptons (low stats.)

ttH multilepton

ttH multilepton: analysis strategy

arXiv:1803.05485, sub. to JHEP

- Event categorisation in lepton flavor, and b-jet multiplicity
- Discriminating variables
 - MEM against ttZ (2 ℓ same-sign + 1 τ_h)
 - Yield in 4-leptons (low stats.)
 - BDTs against $t\bar{t} + jets (1l+2 \tau_h)$ and $t\bar{t} + jets$, $t\bar{t} + V (2 \ell \text{ same-sign}, 3 \ell)$

tTH multilepton

ttH multilepton results arXiv:1803.05485, sub. to JHEP

Best-fit $\mu = 1.23^{+0.45}_{-0.43}$, at 3.2 (2.8) σ obs. (exp.) significance

tTH multilepton

ttH multilepton results arXiv:1803.05485, sub. to JHEP

- $\bullet\,$ Limited by non-prompt lepton estimation and tau identification, JES, $t\bar{t}H$ and $t\bar{t}+V$ modelling
- Several channels limited by statistics

$t\bar{t}H\to ZZ^*\to 4\ell$

PAS-HIG-18-001

• Analysis with full 2017 dataset

- Very clean final state, but tiny branching fraction
- Dedicated ttH channel part of the global $H \rightarrow ZZ^*$ analysis
- $\bullet~t\overline{t}$ hadronic and leptonic channels
 - \geq 4 jets, \geq 1 b-tagged jet and additional 0/1 leptons
- Combined fit (relying on m_{4l} and a kinematic discriminant) with analysis of 2016 data (doi:10.1007/JHEP11(2017)047)

$t\bar{t}H(\gamma\gamma)$

$t\bar{t}H(\gamma\gamma)$

arXiv:1804.02610, sub. to JHEP

- Clear signature coming from the photons
- Higgs boson can be reconstructed as a narrow peak
- Dedicated ttH channel part of the global H $\rightarrow \gamma\gamma$ analysis
- tt hadronic and leptonic channels
- Signal extracted from fit to $m_{\gamma\gamma}$

Combination: First observation of $\ensuremath{t\bar{t}H}$

PRL 120 (2018) 231801

Contributing analyses

- All $t\bar{t}H$ analyses with 2016 data
- 7 TeV (up to 5.1 fb^{-1}) + 8 TeV (up to 19.7 fb^{-1}):

Dedicated analyses targeting the bb and multilepton final states

The ttH categories of the H $\rightarrow \gamma\gamma$ analysis

Correlations between Run-1 and Run-2 analyses

- Inclusive signal theory and some background theory uncertainties correlated
- Experimental uncertainties largely uncorrelated

C. Diez Pardos

07.07.2018

ttH combination

Combination: First observation of tTH PRL 120 (2018) 231801

- Observed significance is 5.2 σ (4.2 σ exp.) with respect to the $\mu_{t\bar{t}H} = 0$ hypothesis
- First observation of the ttH production process

 $\mu_{t\bar{t}H} = 1.26^{+0.31}_{-0.26} = 1.26^{+0.16}_{-0.16}(\text{stat})^{+0.17}_{-0.15}(\text{expt})^{+0.14}_{-0.13}(\text{Th. bkg})^{+0.15}_{-0.07}(\text{Th. sig})$

Summary and outlook

• Results presented for ttH searches with 36 fb⁻¹ of pp collision data @ 13 TeV (2016 data)

- Improvements in analysis techniques compared to Run 1 (e.g. DNN)
- $\bullet\,$ Addition of new challenging final states: fully hadronic mode, final states with hadronically decaying $\tau\,$ leptons
- Work ongoing to reduce limitations of systematic uncertainties of results with full Run-2 lumi.(signal and background modeling ($t\bar{t} + b\bar{b}, t\bar{t} + V$), improve non-prompt lepton estimation, jet flavor tagging...)
- First observation of ttH production, combining 7, 8, and 13 TeV analyses
- New data...
 - More statistics helpful for developing more sophisticated strategy for background control
 - Statistic limited channels will become more and more relevant