

Direction Sensitive Dark Matter Search with Super-high Resolution Nuclear Emulsion

Tatsuhiro Naka

KMI, Nagoya University@Japan on behalf of NEWSdm collaboration

Direction sensitive search → new generation dark matter search experiment

- Essentially new systematics, not only annual modulation
- > It has 100 times gain statistically for required # of signal to annual modulation search
- > Discrimination between neutrino and dark matter using angle information
- > Dark Matte Astronomy (dark matter distribution)

Challenge for Direction Sensitive Dark Matter technologies

Can the solid (or liquid) detector have directional sensitivity to nuclear recoil signal due to WIMPs? (currently gaseous detector is on studied)

- Track length of recoiled nuclei < ~ 1 μm</p>
- Angular dispersion due to straggling ~ 25deg.
- Scalability and low-background

New technical challenge!!

Low mass (~10 GeV/c2) search : light target + < 200 nm length High mass (> 100 GeV/c2) search : heavy target + < ~700 nm

NEWSdm ~ Nuclear Emulsions for WIMP Search + directional measurement

http://news-dm.lngs.infn.it

NEWS: Nuclear Emulsions for WIMP Search
Letter of Intent
(NEWS Collaboration)

LOI under review by the LNGS scince committee https://arxiv.org/abs/1604.04199

2018/7/6

Concept of NEWSdm experiment

treatment

Underground laboratory

Surface laboratory

Readout + analysis
Using microscope techniques

Nuclear Emulsion

Latest nuclear emulsion experiment and readout

OPERA detector

20 m

Observed neutrino oscillation with 30 ton emulsion detector x 5 years (150 ton year) (Emulsions are 20 % volum in this picture)

Current highest speed readout system

Scanning speed ~ several ton /year

Ref: M. Yoshimoto el al., arXiv:1704.06814 [physics.ins-det]

It has good potential for ton scale experiment!

2018/7/6

Concept of super-high resolution

Self-production of Nano Imaging Tracker(NIT)

Production time : 4-5 hours /batch

•One butch : ~ 100 g (+ 300 g)

(there are 2 type machines)

 \Rightarrow kg scale production is possible using this machine.

Current standard Device : Nano Imaging Tracker [NIT] crystal size : 44 nm

Finest grain emulsion : Ultra-NIT [UNIT]

crystal size: 25 nm

80 90 ToNaka et al., Nucl. Inst. Meth. A 718 (2013) 519-521

T. Asada, T. Naka + , Prog Theor Exp Phys (2017) 2017 (6): 063H01

prototype NIT film for dark matter experiment

For high-mass DM

For low-mass DM

<u>Elemental composit</u>	<u>ion ot ivi i</u>
-	
Mass fraction	Atomi

	Mass fraction	Atomic Fraction
Ag	0.44	0.10
Br	0.32	0.10
I	0.019	0.004
С	0.101	0.214
0	0.074	0.118
N	0.027	0.049
Н	0.016	0.410
S, Na + others	~ 0.001	~ 0.001

◆ Intrinsic radioactivity :

U-238	Th-232	K-40	Ag-110m	C-14
27	6	35	(~400)	24000

[mBq/kg]

◆ Intrinsic neutron emission:

~ 1.2 /kg/y (by SOURCE simulation)

 \Rightarrow ~ 0.1 /kg/y (> 100 nm nuclear recoil)

Detail shown in Astropart. Phys. 80 (2016) 16-21

NIT device potential

10 kg·year simulated sensitivity [90 % C.L.] + zero BG

NIT detector / CNO sensitive / no Bkg no directionality Simulation limit is "energy > 5 keV for all atoms (SRIM limit)" & "Sensitivity > 0.1 % (Simulation statistics limit;10 event)"

Low-velocity ion tracking

Can use ion implantation as calibration source

- Mono energy ($\pm 0.1 \text{ keV}$)
- Good direction uniformity (<10 mrad)
- Now, C from CO₂ Ar, Kr (but other various ion is possible)

Side view of i

AgBr crystal has good sensitivity about Carbon (~ 100 % efficiency)

2018/7/6

Development of New Readout System for nano-tracking

Prototype R&D system @Nagoya and Napoli

K. Kimura and T. Naka, Nucl. Inst. Meth. A 680 (2012) 12-17

T. Katsuragawa et al, JINST 12 T04002 (2017)

Performance using only elliptical shape analysis

Current microscope has the potential to select > 100 nm length

tracks

Direction sensitive eff.:

~30 % @60 keV

(Cullently limited by the optical

condition \Rightarrow to be upgrade)

Angular resolution:

- ~30 deg. @60 keV
- ⇒ good compatibility to expectation by simulation

Readout efficiency PTS-1.5(Ellipticity>=1.25,1.40,1.60 & minor>=4.8)

Demonstration of direction sensitive nuclear recoil detection due to 14.8 MeV neutrons

Mostly detected target was Br recoil [< 200 keV]

Now on preparing CNO recoil demonstration due to 565 keV (Li-p nuclear fission reaction)

Study of higher level event selection technique

- For Signal/Background discrimination
- For lower energy threshold
- Super-resolution microscopy
- X-ray microscope (TN et al., Rev Sci Instrum. 2015 86(7):073701)
- Machine learning
- Phase-difference imaging etc.

Cutting-edge technologies for microscopy and image-processing

Localized Surface Plasmon Resonance (LSPR)

Localized Surface Plasmon Resonance

Light of microscope

silver nano particle

$$p = 4\pi\varepsilon_m a^3 \frac{\varepsilon_1(\lambda) - \varepsilon_m(\lambda)}{\varepsilon_1(\lambda) + 2\varepsilon_m(\lambda)} E_0$$

$$\varepsilon_1(\lambda_l) + 2\varepsilon_m(\lambda_l) \approx 0$$

Plasmon Resonance condition

Silver-nano particle

Recoiled proton track due to neutron

Concept of super-resolution microscopy using LSPR

- Dipole moment for non-spherical Ag nano particle depends on the polarization angle
- Resonance wavelength is shifted by that.

By combination both the wavelength shift and rotation of polarized angle, non-diffractive condition is realized. optical resolution ≒position accuracy

(~ 10 nm or less)

Developed silver grain such as the nuclear recoil has very complicated silver filametn structure

⇒ It's very good to realize above concept

Resolution calibration

Automatic plamon analysis microscope system

- Liquid crystal rotater
- suppression of stage vibration
- (•color imaging)
- (*combine machine learning)

Pixel of X axis [1 pix.: 58 nm]]

Readout study using the plasmonics information

Direction sensitivity using plasmon analysis

Shift of barycenter is important information for nano-scale structure

Demonstration of the direction sensitivity have been done.

Prelin

Direction sensitivity of low-energy C ion [30 keV]

Expected: 135° -> Measured: 136°

Indication:: low-mass dark matter (< 10 GeV/c2) can be seen with the direction!

φ [rad]

Background studying

	Main source	Technologies	Expected rejection power or event rate			
Physical BG						
Electrons	C-14 β Environment gamma	Crystal temperature dependence (M. Kimura et al., NIM A 845 (2017) 373) Crystal sensitivity control Image and plasmonic analysis	(> 10 ⁶ or more rejection power (< O(1) /kg/day)) *now on studying			
		Synthetic Polymer	> 10 ³ or more			
Neutron	Intrinsic (α, n)	c (α, n) - $\sim 3 \times 10^{-4} / \text{kg/da}$ Astropart. Phys. 80 (
	Environment	Water shield	< 1E-4/kg/day			
Cosmic-ray	Recoiled nuclei	Coincidence with MIP sensitive emulsion	ve emulsion *on studying using simulation			
	Spallation neutron	(under studying with simulation)	(~O(10 ⁻⁴)/kg/day * now on study)			
Nonphysical BG						
Contaminated dust	(under studying)	Clean room Plasmonic analysis and image processing Machine learning Chemical treatment	Under studying (at least > 10 ⁶ or more, in principle it should not be background)			

Test experiment Site

Gran Sasso underground laboratory, Italy

Now on constructing the device production facility at Hall.F, LNGS

Operation will be started in this October

Conclusion

- > Directional sensitive search is new methodology to obtain new information for direct dark matter search
- ➤ Super-fine grained nuclear emulsion (Nano Imaging Tracker : NIT) have been firstly demonstrated to be able to detect the nuclear recoil as track.
- ➤ NEWSdm project is now on going as international experiment toward directional dark matter search in the LNGS
 - 2018: underground facility construction at LNGS
 - 2019: TDR will be prepared and start the small scale experiment
 - 2020 : preparation and run for larger scale experiment of ~ kg scale
- > Background study and new readout technologies are now on progress

Potential of Directional Sensitive Search

Direction information: Several 10 events

Annual modulation: Several 1000 events

