

FNON

Latest Results from the **XENON Dark Matter Project**

Michael Murra, WWU Muenster, on behalf of the XENON collaboration

living.knowledge

07.07.2018

michaelmurra@wwu.de

The XENON collaboration

Purdue

Michael Murra - Latest results from the XENON Dark Matter Project – ICHEP 2018, Seoul

NYUAD

Dual phase xenon time projection chamber

Prompt scintillation photons

Secondary scintillation photons from electroluminescence in Gxe due to drifted electrons

3D vertex reconstruction:

Michael Murra - Latest results from the XENON Dark Matter Project - ICHEP 2018, Seoul

Michael Murra - Latest results from the XENON Dark Matter Project – ICHEP 2018, Seoul

Michael Murra - Latest results from the XENON Dark Matter Project – ICHEP 2018, Seoul

WWU

XENON1T @LNGS (Italy)

Michael Murra - Latest results from the XENON Dark Matter Project – ICHEP 2018, Seoul

XENON1T @LNGS (Italy)

Michael Murra - Latest results from the XENON Dark Matter Project - ICHEP 2018, Seoul

Eur. Phys. J. C. (2017) 77:881

TWO BACKGROUNDS

THREE DARK MATTER SEARCH

FOUR XENONNT

Electronic Recoil backgrounds

Intrinsic contaminants Kr-85 and Rn-222 (Pb-214)

- \rightarrow Leakage events from the low energy β -spectrum contaminate ROI for dark matter search
- Material screening to avoid radon emanation \rightarrow
- \rightarrow Krypton reduction by cryogenic distillation

Nuclear Recoil backgrounds

Cosmogenic neutrons

Induced by cosmic muons. Reduced to negligible contribution by rock overburden, water passive shield and active Cherenkov Muon Veto. JINST 9, P11006 (2014)

Radiogenic neutrons

From (α, n) and spontaneous fission in detector's materials. Reduced via radiopure material selection, scatter multiplicity and fiducialization. Eur. Phys. J. C. (2017) 77:890

Coherent Elastic neutrino-nucleus scattering

Mainly from ⁸B solar v. Constrained by flux and cross section measurement. Irreducible background at very low energy (< 1 keV)

<u>1</u>	
_	
	WWU
	MÜNSTER

Accidental coincidence

- Lone-S1 signals may accidentally coincide (AC) with lone-S2 signals. → **fake interactions**
- Empirical model verified with ²²⁰Rn calibration data and background sidebands.

Surface events

- ²¹⁰Pb from ²²²Rn chain plates out on PTFE surfaces.
- S2 signal losses when ²¹⁰Pb β -decay happens on surface. \rightarrow leakage into signal region
- Data driven model based on ²¹⁰Po surface control samples.

FOUR

XENONNT

The result presented today combines both science runs for 278.8 days total livetime. → 1 tonne x year exposure given 1.3 tonne fiducial volume.

Signal region **blinded** for SR1, **re-blinded** for SR0 + **salted**.

ER and NR calibration

WWU

MÜNSTER

~99.7% ER rejection in NR reference region [NR median,-2σ]

Background predictions

corresponding to [4.9, 40.9] keVnr and [1.4, 10.6] keVee.

NR reference region

Between NR median and -2σ quantile. Numbers in table are for illustration; final results from complete PLR statistical inference.

Results: Unblind + Desalt!

Events passing all selection criteria are shown as pie charts representing the relative PDF from each component for the best-fit model for 200 GeV WIMP (σ_{SI} =4.7 · 10⁻⁴⁷ cm²).

Larger charts → Larger WIMP probability

Results: Spatial Distribution

Distinguish WIMPs over neutron background

Results: Sensitivity and Limit

Michael Murra - Latest results from the XENON Dark Matter Project – ICHEP 2018, Seoul

Fast Upgrade to XENONnT

Minimal Upgrade The XENON1T

infrastructure and subsystems were originally designed to accommodate a larger LXe TPC

Fiducial Xe Target

XENONnT TPC features: total Xe mass = 8 t target mass = 5.9 t fiducial mass = ~4 t

Background

Record low-back levels in XENON1T dominated by 222 Rn-daughters. Identified strategies to effectively reduce 222 Rn by ~ a factor 10.

Fast Turnaround

Use XENON1T subsystems, already tested Fast pace: Installation starts in 2018 Commissioning in 2019

XENONnT: Radon mitigation

 \rightarrow Even more careful material selection compared to XENON1T

New radon distillation system

High throughput column with 200 slpm.

arXiv:1803.08498

New radon-free pump for GXe PUR

Magnetically coupled piston pump was installed at XENON1T in June 2018

 \rightarrow Reached ~1 ms electron lifetime

 \rightarrow Radon reduction ~ 45%

Michael Murra - Latest results from the XENON Dark Matter Project – ICHEP 2018, Seoul michaelmurra@wwu.de