

833 [5 Jul, 09:40]

Dark Matter Axion Search Experiments Using 18T HTS Magnet at CAPP/IBS in KAIST

Byeong Hun Min

Center for Axion and Precision Physics Research IBS

Outline

- 1. Axion as dark matter
- 2. Important factors for Axion search
 - HTS Magnet (18T)
 - Cryostat (4K)
 - Cavity
 - DAQ system
- 3. Results from our present setup
- 4. Factors improvement
 - Dilution refrigerator (~20 mK) with 18 T magnet
 - JPC : First stage amplifier
 - Cancellation magnet
- 5. Our Project

Invented to solve the strong-CP problem in QCD

- Non-thermal mechanism of producing axion dark matter in the early Universe
- The initial axial angle Θ determines the potential energy to be released.
- The potential energy density (order of Λ_{QCD}⁴) is converted into cold dark matter
- Axion dark matter mass is determined by the harmonic oscillator frequency

 $m_a \simeq \Lambda_{QCD}^2/f_a < 10^{-3} \text{ eV} !$

Axion Dark Matter Search

the dark matter can be overproduced relative to the photons

Axion Haloscope

Assume: $m_a \simeq \mu eV$ RF antenna $ho_{\rm DM} = 3 \times 10^8 \, {\rm eV/cc} = 2.4 \times 10^{-6} {\rm eV}^4$ $\beta = 10^{-3} \text{ or } < v_a > = 10^{-3} c$ Strong B-field magnet Strong B-field magnet $L_{coh} = \frac{1}{p} \simeq 10^9 \mathrm{eV}^{-1} \simeq 200 \mathrm{\,m}$ а = B_0 $t_{coh} = \frac{1}{E} \simeq 10^{12} \mathrm{eV}^{-1} \simeq \mathrm{msec}$ ${\cal L}\equiv -rac{1}{4}gaF ilde{F}pproxrac{lpha}{8\pi f_{PQ}}aF ilde{F}$ $= aa\vec{E}\cdot\vec{B}$ High Q cavity $\frac{\partial \left(\mathbf{E}^{2}/2\right)}{\partial t} - \mathbf{E} \cdot \left(\nabla \times \mathbf{B}\right) = g_{a\gamma} \dot{a} \left(\mathbf{E} \cdot \mathbf{B}\right)$ $P_a = g^2 \frac{\rho_a}{m} B_0^2 V \times \min(Q_{\text{cav}}, Q_a)$ Oscillating source current -> RF photons

~ 10⁻²¹W at ma=µeV

(assuming B=8T, V=0.2 m³ magnet and cavity Q =10⁵)

RF photon frequency = axion mass

CAPP's Dark Matter Axion Search Strategy

18T HTS Magnet (7cm Bore)

A strong B-field and large bore HTS magnet can be commercially produced by SuNAM Co. Ltd.

2G HTS Superconducting Magnet Magnetic field : 18 Tesla Dimension: 70 mm ID / 168mm OD 200 mm uniform field (>90%) 552 mm length Quench free design (No-Insulation winding) Compact and easy to operate

The magnet delivery by summer 2017

Initial DM axion mass range to probe: 17 to 36 µeV

(Later we will apply multiple cavity method to probe higher mass range search)

18 T no insulation magnet

18T HTS Magnet with 4 K Cryostat

Measurement program

The cavity resonance frequency is tuned by tuning rod which is controlled by stepper motor

Uniformity: 93%(±100 mm)

Stability: <0.05% in 2 weeks •

Very high quality of our HTS magnet.

20

Related Poster : JongKuk Kim(6 July 2018, 18:30)

IBS

9

Min_180705_ICHEP

Simulation of frequency in cavity

• The third factor for axion search is high Q-value cavity

- The dielectric rod has lower frequency than conducting rod .
- We use the red line (TM010 mode)for axion search.

Related Poster : YoungJae Lee (6 July 2018, 18:30)

Cavity

• Scanning Rate vs. Length of Cavity

$$\frac{df}{dt} = \left(\frac{1}{snr}\right)^2 \left(\frac{P_{signal}}{k_B T_{syst}}\right)^2 \frac{Q_a}{Q_L} = g_{a\gamma\gamma}^4 \left(\frac{\rho_a}{m_a}\right)^2 \left(\frac{B^2 V C}{k_B T_{syst}}\right)^2 Q_0 Q_a \frac{\beta^2}{(1+\beta)^3}$$
$$C = \frac{\left|\int_V \vec{E}_c \cdot \vec{B}_0 dV\right|^2}{\int_V |\vec{E}_c|^2 dV \cdot \int_V |\vec{B}_0|^2 dV}$$
assuming

DAQ System

Measurement of the resonant frequency in the copper cavity

Background Noise at 4 K (under 18 T)

T : 4 K H : 18 T

Combination of Dilution refrigerator and 18 T magnet

• At present, we are going to improve our experimental setup.

Josephson Parametric Converter (JPC : Quantum Limit Amplifier)

Min_180705_ICHEP

16 **IBS**

Cancellation Magnet Development

Need the cancellation magnet for JPC operation in 18 T

Installation of improvement factors for experiment

Our experimental setup will be installed with this condition.

Magnetic field : 18 T Noise temperature : ~ 500 mK Q-factor : ~70,000 Real time DAQ : ~ 80% (efficiency) (Physical <u>temperature :~ 20 mK)</u>

Projected Axion Search Goal

We will probe the axion with Dilution and JPC and so on.

- We use 18 T HTS solenoid magnet for Axion Haloscope research.
- We measured the TM modes in the cavity at 4 K(under 18 T)
- We will install the dilution refrigerator and 18 T magnet in October.
- We will sure probe the dark matter Axion in the range of 17 ~ 36 μ eV. (f : 3.7 ~ 8.8 GHz)