

Dark matter searches in XMASS

ICRR, University of Tokyo
K. Kobayashi
On behalf of the XMASS collaboration

July 7th, 2018 XXXIX international conference on high energy physics, Seoul, South Korea

XMASS experiment

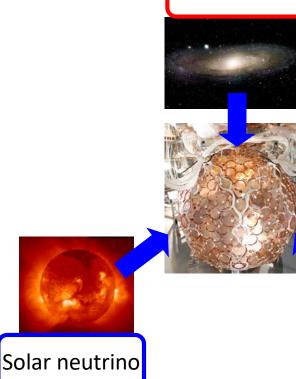
XMASS

Multi purpose low-background and low-energy threshold experiment with liquid Xenon

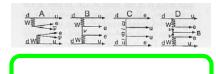
- Xenon detector for Weakly Interacting MASSive Particles (dark matter search)
- Xenon MASSive detector for solar neutrino (pp/⁷Be)
- Xenon neutrino MASS detector (ββ decay)

Purpose of the first phase is the dark matter search.

history of XMASS

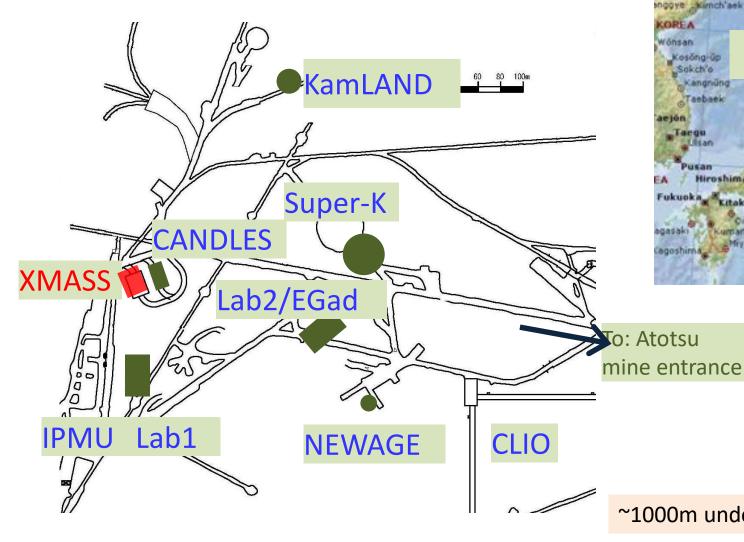

2012 2016 2010 2011 2014 2015 2013 2017 2018

detector construction completed (Sep. 2010) - May 2012)


commissioning run (Dec. 2010

detector refurbishment (Aug. 2012 - Oct. 2013)

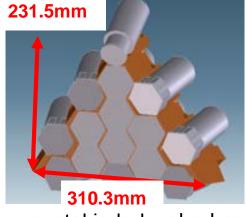
- Resume data taking (Nov. 2013 -)
- We have already taken data for >4.5year.



Dark Matter

Double beta decay

Kamioka mine

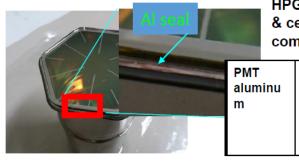


~1000m underneath Mt. Ikenoyama

XMASS detector

- 10.5m 10m
- > Outer detector (OD, water tank)
 - > 72 20-inch PMTs for cosmic-ray muon veto.
 - ➤ Water is also passive shield for gamma-ray and neutron from rock/wall.
- ➤ Inner detector (ID, Liquid Xe)
 - ➤ Liquid Xe surrounded by 642 2-inch PMTs.
 - > Single phase
 - Observed scintillation light.
 - photo coverage: 62%
 - → diameter: ~800mm
 - ➤ high light yield: 14.7 PE/keV

pentakisdodecahedron


NIM A716, 78-85, (2013)

Hexagonal PMT Hamamatsu R10789

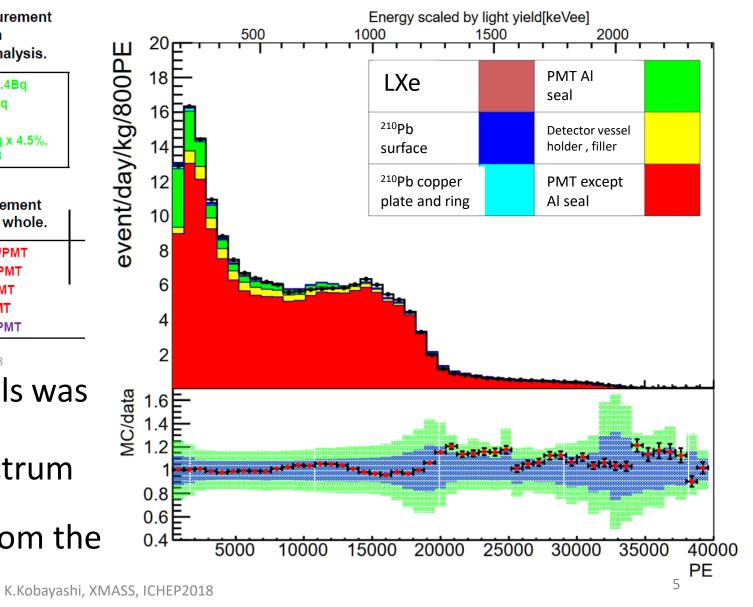
113mm

Background in XMASS

Only standard cut is applied

HPGe detector measurement & center value used in commissioning run analysis.

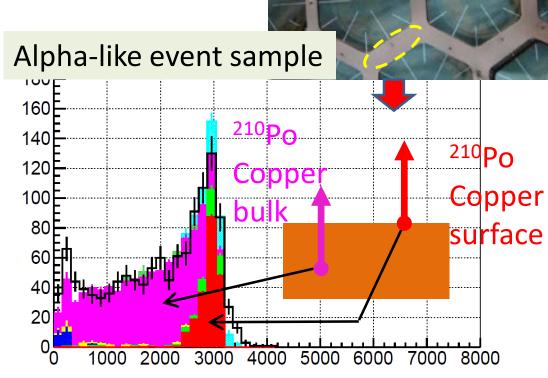
238U-230Th: 1.5+/-0.4Bq 210Pb: 2.85+/-1.15Bq 232Th: 96+/-18mBq 235U-207Pb: ~1.5Bq x 4.5%,

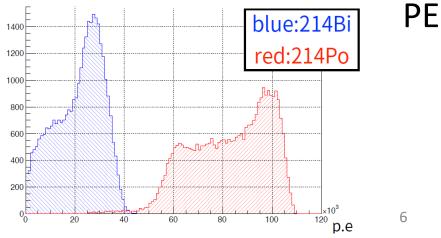

correlated with U238

HPGe detector measurement for each parts and PMT whole.

232Th: 1.80+/-0.31mBq/PMT 60Co: 2.92+/-0.16mBq/PMT 40K: 9.10+/-2.15mBq/PMT 238U: 2.26+/-0.28Bq/PMT 210Pb: 200+/-100mBq/PMT

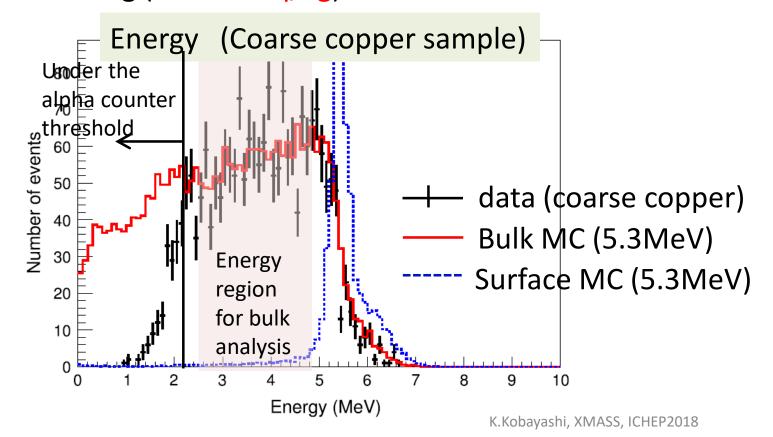
8

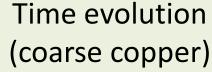

- RI screening of detector materials was done using HPGe detector.
- RI activity are estimated by spectrum fitting for > 400pe (~30keV) (full volume data) with constraints from the screening results.

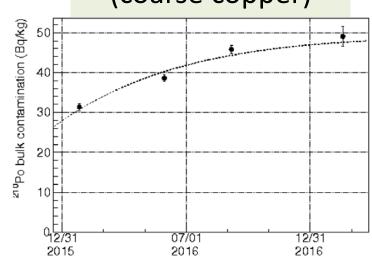


Background in XMASS

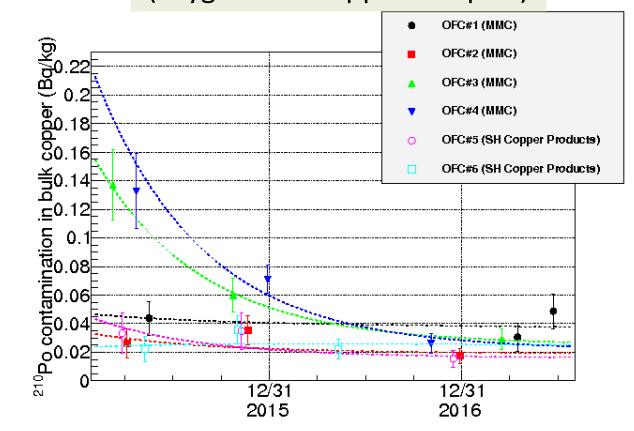
- ²¹⁰Pb in copper surface & bulk.
 - Alpha-ray events are identified using scintillation decay time.
 - Copper surface/bulk ²¹⁰Pb concentration are estimated by alpha-ray from ²¹⁰Po decay (Alpha from bulk makes continuous spectrum.).
 - ²¹⁰Pb Contamination in the bulk oxygen-free copper was confirmed (~20 mBq/kg) by an alpha-particle counter -> See next page
- RI in liquid xenon.
 - Coincidence analysis is used for 222 Rn as 214 Bi- 214 Po (164μs) decay, 85 Kr as beta-gamma (1.015μs, 0.434%).
 - Concentration of C14 and ³⁹Ar in LXe are
 estimated from spectrum fits.


 K.Kobayashi, XMASS, ICHEP2018


Measurement of ²¹⁰Pb in bulk copper by alpha counter


Not only the surface alpha events, but also bulk events can be observed! Sensitivity to ²¹⁰Pb is world best in screening (a few mBq/kg).

Low background alpha-counter XIA Ultra-Lo-1800



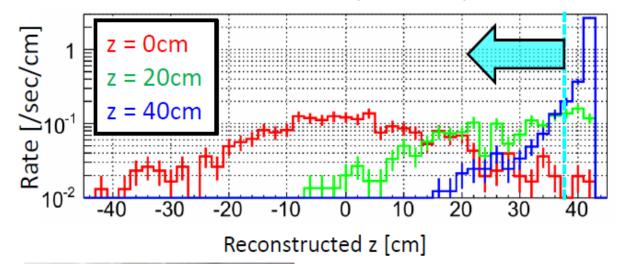
²¹⁰Pb in bulk oxygen free copper is measured for the first time

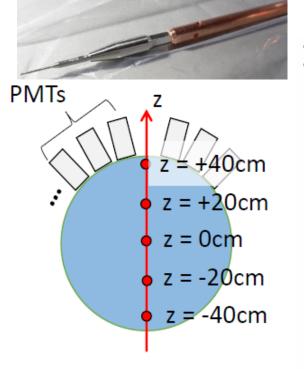
- Many oxygen free copper samples are measured. ²¹⁰Pb contamination is 17-40 mBq/kg.
- Spare plate for XMASS detector is also measured to be 26±11mBqkg, which is NOT negligible in XMASS WIMP analysis. This is consistent to alpha-like events measurement in XMASS detector.
- This is the first measurement of ²¹⁰Pb contamination in oxygen free copper (NIMA884 (2018)157-161)

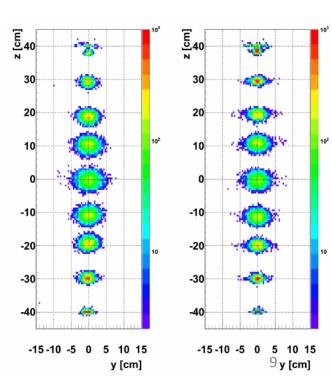
Time evolution (oxygen free copper samples)

Event selection of WIMP search (arXiv: 1804.02180)

- Standard cut
 remove electronic noise events, Cherenkov
 events, after pulse events, and so on.
- Timing based vertex reconstruction R(T)
 First hit timing of each PMT is used.
 Position is fitted by likelihood. Events are selected if R(T)<38cm.</p>
- 3. PE based vertex reconstruction R(PE)

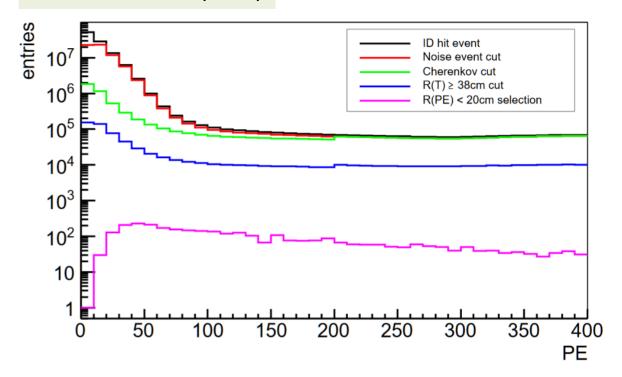

 PE map is made in each position using MC.

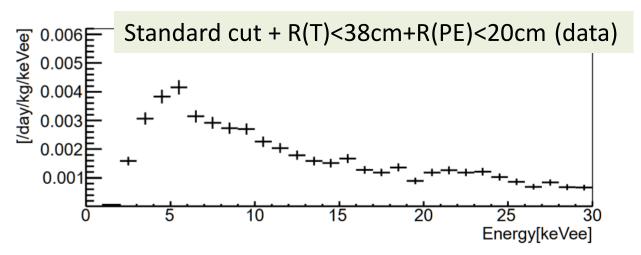

 Event vertex is calculated by likelihood.


 Energy is also reconstructed. Events are selected if R(PE)<20cm.

 K.Kobayashi, XMASS, ICHEP2018

²⁴¹Am calibration data (5–10 keV)

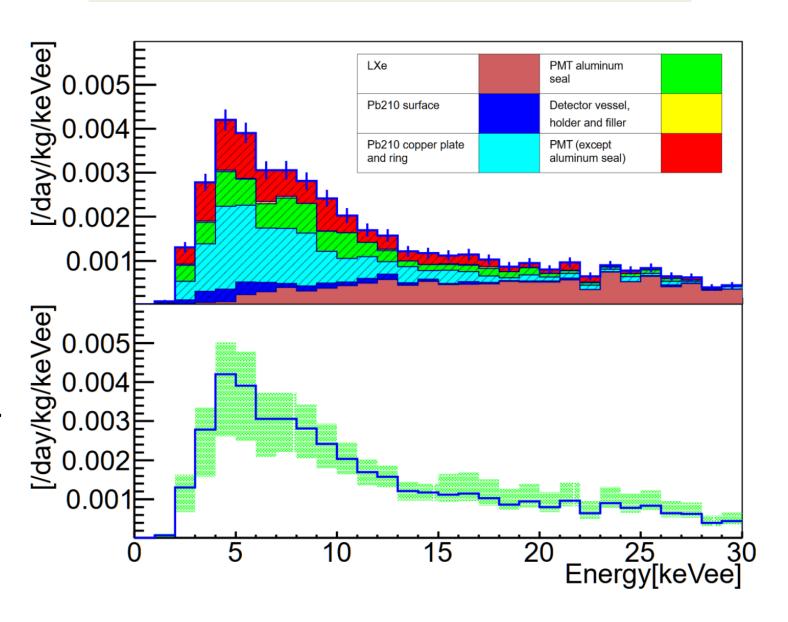


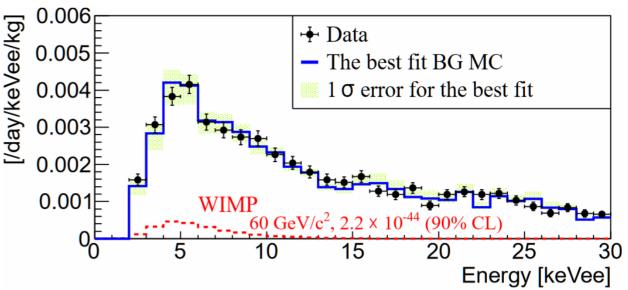


Data (WIMP search)

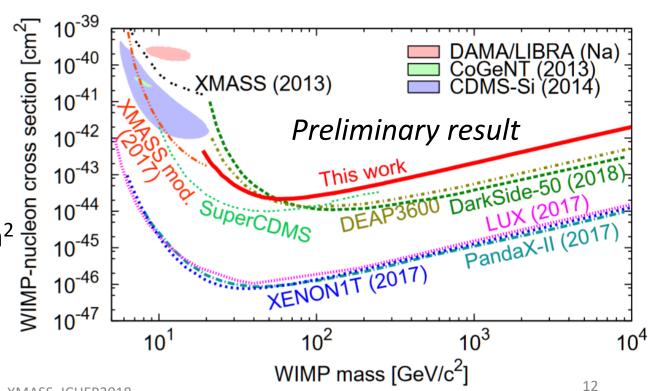
- Dataset
 - Nov. 20th, 2013 Mar. 29th, 2016
- Livetime
 - 705.9days.
- After applying all the cuts (standard cut + R(T) cut + R(PE) cut), event rate becomes $^4 \times 10^{-3}$ /day/kg/keVee @ 5-5.5keVee.

event selection (data)

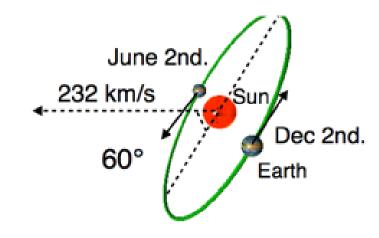



Background estimate of WIMP search

- Background MC is generated using XMASS MC for each RI's decay mode and its activity.
- Optical parameters of LXe are traced with our ⁵⁷Co57 and ⁶⁰Co regular calibration.
- Same event selection is applied to background MC, which has the same livetime as the dataset.
- ~90% of remaining BG is of detector surface origin (not internal BG). => misreconstructed events.

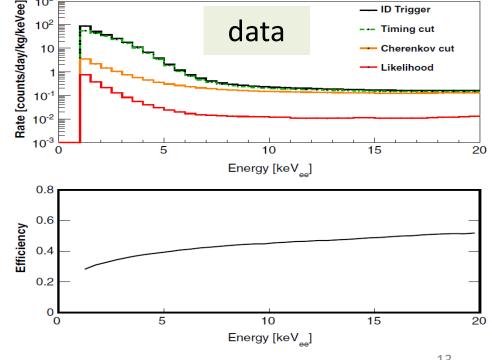

Standard cut + R(T)<38cm+R(PE)<20cm (MC)

Search for WIMPs with background evaluation in the fiducial volume.

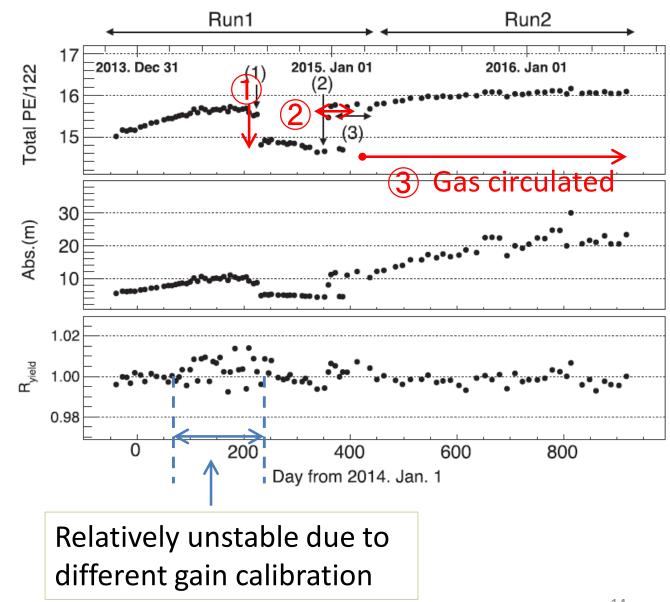


- Data is consistent with background expectation.
- The energy spectrum of the data was fitted with background MC plus WIMP MC in the energy range of 2-15keVee.
- Our exclusion limit at 90% CL is 2.2x10⁻⁴⁴cm² at 60GeV WIMPs mass.
- The result can be found at arXiv: 1804.02180.

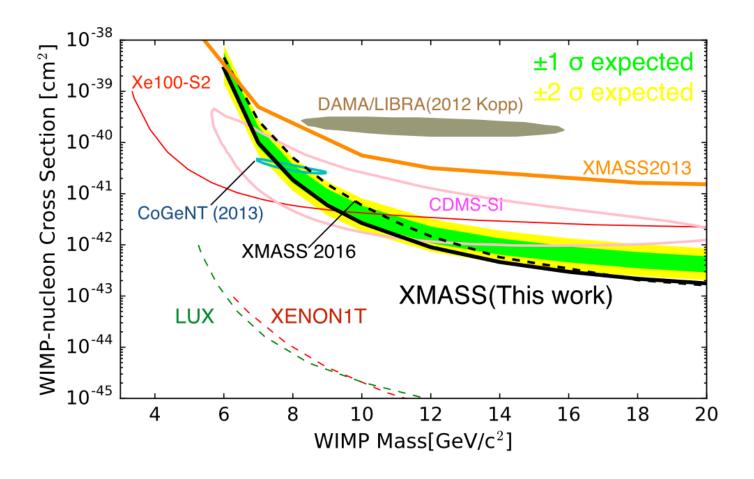
Annual modulation search


Dark matter event rate is expected to modulate annually due to relative motion of the Earth around the Sun. Annual modulation claimed by DAMA/LIBRA phase1+phase2 with 11.9σ significance (1.04+1.13 ton year, 13 cycles).

ID Trigger


Search in XMASS (PRD97 (2018) 102006)

- >2year cycle data (1.82ton year) with low threshold (1.0keVee, =4.8keVnr)
- No particle ID (just like DAMA/LIBRA)



Detector stability

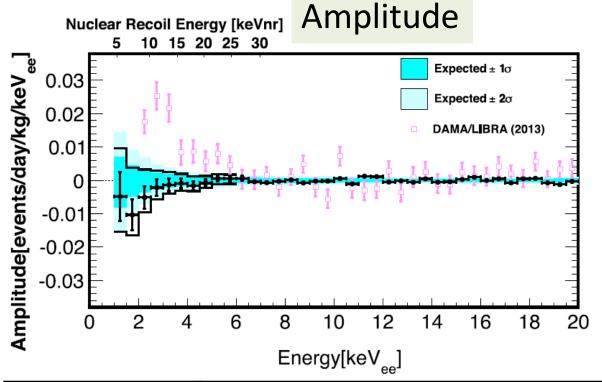
- We observed PE yield changes using Co57 source calibration.
 - 1 Sudden drop at the power failure
 - 2 Purification work
 - 3 Continuous gas circulation.
- Run2 is more stable (Run1 is used in previous result (PLB2016)).
 (RMS of P.E. yield : 0.5%)
- Using the calibration and MC, estimated the detector stability.
 - The PE yield change is described by the change of absorption length.
 - RMS of deduced relative lightyield: Run1 0.6%, Run2 0.3%

Standard WIMP search by modulation

- Leff uncertainty is taken into account.
- DAMA/LIBRA region is excluded by our measurement.

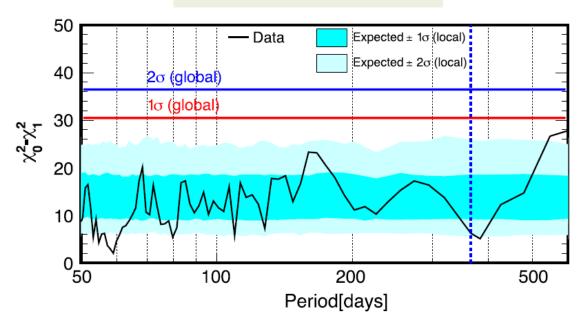
Model assumption

T:1year, t0=152.5day (fixed)


 V_0 : 232.0 km/s

 V_{esc} : 544 km/s

 ρ_{dm} : 0.3 GeV/cm³


Lewin, Smith (1996)

Model independent results of annual modulation search

Experiments	Amplitude(events/day/kg/keV _{ee})
DAMA/LIBRA	~0.02 at 2.0-3.5keV _{ee}
XENON100	$1.67 \pm 0.73 \text{ x } 10^{-3} \text{ at } 2.0-5.8 \text{keV}_{\text{ee}}$
XMASS	<(1.3-3.2) x 10 ⁻³ at 2-6keV _{ee}

Power spectrum

- Phase t₀: free parameter. 1–6 keV_{ee}
- Test statistics : $\Delta \chi^2$ of model independent analysis between null and periodic hypotheses.
- No significant period was found between 50 and 600 days.

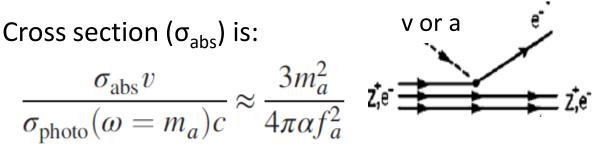
Hidden photon (HP) and Axion-like particle (ALP) dark mater search: motivation

HP (vector boson super-WIMPs)

Cross section (σ_{abs}) is:

$$\frac{\sigma_{\rm abs} v}{\sigma_{\rm photo}(\omega=m_V)c} pprox \frac{\alpha'}{\alpha}$$

 (α') : the vector boson analogue to the fine structure constant. v: velocity of the vector boson)


- Can be detected by absorption of the particle, which is similar to the photoelectric effect.
- The counting rate (S_{ν}) in the detector is:

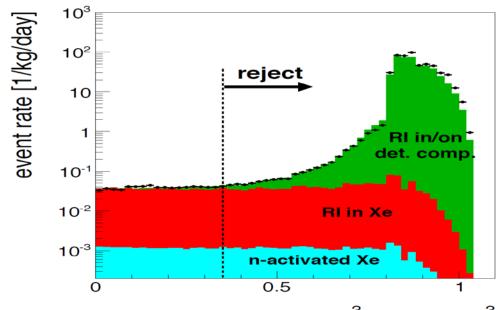
$$S_v \approx \frac{4 \times 10^{23}}{A} \frac{\alpha'}{\alpha} \left(\frac{\text{keV}}{m_V}\right) \left(\frac{\sigma_{\text{photo}}}{\text{barn}}\right) \text{ kg}^{-1} \text{ day}^{-1}$$

(A: atomic mass, standard local matter density: 0.3GeV/cm³) Pospelov et, al. Phys. Rev. D 78 115012 (2008) ALP (pseudo-scalar boson super-WIMPs)

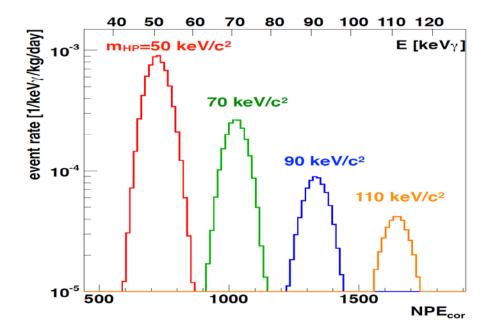
Cross section (σ_{abs}) is:

$$\frac{\sigma_{\rm abs} v}{\sigma_{\rm photo}(\omega = m_a)c} \approx \frac{3m_a^2}{4\pi\alpha f_a^2}$$

(v: velocity of the vector boson, m_a: pseudoscalar mass, f_a: dimensionful coupling constant.)

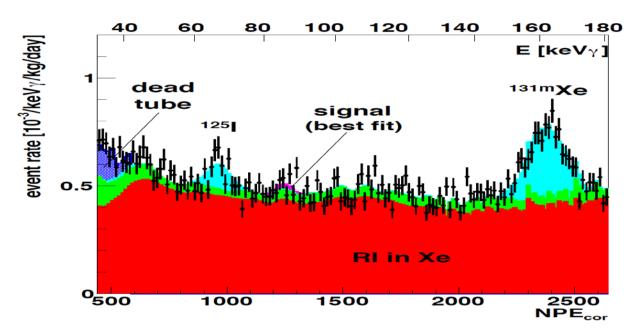

The counting rate in the detector is:

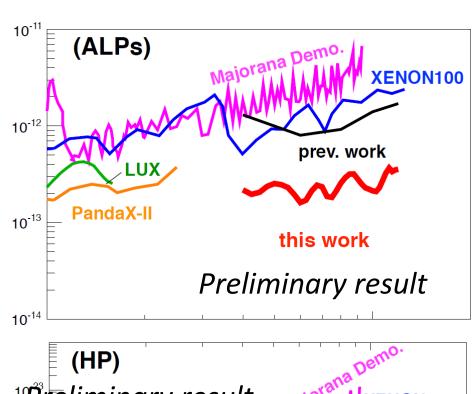
$$S_a \approx \frac{1.2 \times 10^{19}}{A} g_{aee}^2 \left(\frac{m_a}{\text{keV}}\right) \left(\frac{\sigma_{\text{photo}}}{\text{barn}}\right) \text{ kg}^{-1} \text{ day}^{-1}$$

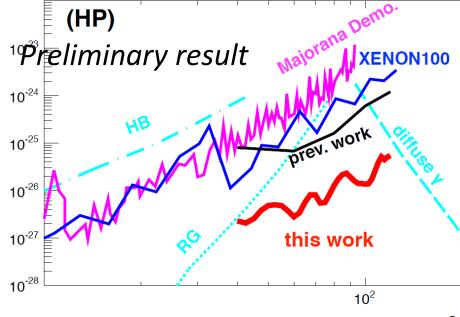

$$(g_{aee}=2m_e/f_a, m_e: electron mass)$$

Hidden photon and axion-like particle search: method

- Dataset: Nov. 2013 Jul. 2016 (livetime 800days)
- Selection criteria: standard cut + fiducial volume cut (R<30cm) (327kg FV)
- Peak is expected in the NPE distribution.




 $R^3/(42.6 cm)^3$



Hidden photon and axion-like sarch: result

- Peak search with signal + background model by fitting at 440-2650NPE_{corr} (30-180keV γ).
- No candidates are found. Best constraint in 40-120keV/c² in both searches.

HP / ALPs mass [keV/c 2]

summary

- ➤ A WIMP dark matter search has been conducted based on background understanding. No WIMP singal is observed and the exclusion limit is calculated to be 2.2x10⁻⁴⁴cm² for 60GeV WIMPs.
- Annual modulation analysis has been performed using large exposure, 1.82ton·year data. No significant modulated WIMP signal has been observed. The result excluded DAMA/LIBRA allowed region.
- ➤ The best constraint is obtained at 40-120keV/c² for hidden photon and axion like particle dark matter search.
- ➤ We continue to take data. Various kind of dark matter candidates /physics topics has been searched for! We also continue to study various kinds of physics because XMASS has large exposure and is sensitive to both nuclear recoil and beta/gamma.

backup

XMASS collaboration

ICRR, University of Tokyo	K. Abe, Y. C. Chen, K. Hiraide, K. Ichimura, S. Imaizumi, N. Kato, Y. Kishimoto, K. Kobayashi, M. Kobayashi, S. Moriyama, M. Nakahata, K. Sato, H. Sekiya, T. Suzuki, S. Tasaka, A. Takeda, M. Yamashita		
Kavli IPMU, University of Tokyo	K. Martens, A. Mason, Y. Suzuki, B. Xu		
Kobe University	K. Miuchi, Y. Takeuchi		
Tokai University	K. Nishijima		
Tokushima University	K. Fushimi		
Yokohama National University	S. Nakamura		
Miyagi University of Education	Y. Fukuda		
Nihon University	H. Ogawa		
ISEE, Nagoya University	Y. Itow, K. Kanzawa, R. Ishii		
IBS	N.Y. Kim, Y. D. Kim		
KRISS	Y. H. Kim, M. K. Lee, K. B. Lee		

11 institutes, 36 collaborators

WIMP search in the fiducial volume

Location of RI	RI	Activity [mBq/detector]	Activity [mBq/detector]
		initial value of the fit	the best fit value
LXe	²²² Rn	-	8.53±0.16
	$^{85}{ m Kr}$	-	0.25±0.04
	³⁹ Ar	-	0.65±0.04
	¹⁴ C	-	0.19±0.01
copper plate and ring	²¹⁰ Pb	-	(6.0±1.0)×10 ²
copper surface	²¹⁰ Pb	-	0.7±0.1
PMT quartz surface	²¹⁰ Pb	-	6.4±0.1
PMT	²³⁸ U	$(1.5\pm0.2)\times10^3$	(2.0±0.2)×10 ³
(except aluminum seal	$^{232}\mathrm{Th}$	$(1.2\pm0.2)\times10^3$	$(1.1\pm0.3)\times10^3$
and quartz surface)	⁶⁰ Co	$(1.9\pm0.1)\times10^3$	$(1.6\pm0.2)\times10^3$
	⁴⁰ K	$(5.8\pm1.4)\times10^3$	$(9.6\pm1.7)\times10^3$
	²¹⁰ Pb	(1.3±0.6)×10 ⁵	(2.2±0.7)×10 ⁵
PMT aluminum seal	²³⁸ U	$(1.5\pm0.4)\times10^3$	(9.0±4.1)×10 ²
	$^{235}{\rm U}$	$(6.8\pm1.8)\times10^{1}$	$(4.1\pm1.8)\times10^{1}$
	$^{232}\mathrm{Th}$	(9.6±1.8)×10 ¹	$(5.5\pm2.2)\times10^{1}$
	²¹⁰ Pb	$(2.9\pm1.2)\times10^3$	$(3.4\pm1.2)\times10^3$
Detector vessel,	²³⁸ U	$(1.8\pm0.7)\times10^3$	(9.0±7.6)×10 ²
holder and filler	²³² Th	$(6.4\pm0.7)\times10^3$	$(6.4\pm3.2)\times10^3$
	⁶⁰ Co	$(2.3\pm0.1)\times10^2$	$(3.0\pm1.9)\times10^2$
	²¹⁰ Pb	-	$(3.8\pm0.5)\times10^4$

Contents	Systematic error		
	$2-15 \text{ keV}_{ee}$	$15-30~\mathrm{keV_{ee}}$	
(1) Plate gap	+6.2/-22.8%	+1.9/-6.9%	
(2) Ring roughness	+6.6/-7.0%	+2.0/-2.1%	
(3) Copper reflectivity	+5.2/-0.0%	+2.5/-0.0%	
(4) Plate floating	+0.0/-4.6%	+0.0/-1.4%	
(5) PMT aluminum seal	+0.7/-0.7%	-	
(6) Reconstruction	+3.0/-6.2%	-	
(7) Timing response	+4.6/-8.5%	+0.4/-5.3%	
(8) Dead PMT	+10.3/-0.0%	+45.2/-0.0%	
(9) LXe property	+0.7/-6.7%	+1.5/-1.1%	