CAPP’s Axion Data with mass range around 10 μeV

Woohyun Chung

Center for Axion and Precision Physics Research (CAPP)
Institute for Basic Science (IBS)
• Introduction
 – IBS/CAPP
 – CAPP’s effort (CULTASK)
• CAPP-PACE (Pilot Axion Cavity Exp.)
 – R&D machine
 – First complete LT axion experiment
 – 50 MHz data and more…
• Critical R&D
 – High Field Magnets
 – Quantum-limited Amplifiers
 – SC and dielectric cavity
• Future Plans
 – Improve B^2 and T_{sys}
• Summary
Center for Axion and Precision Physics Research (CAPP) Funded by the Institute for Basic Science (IBS)

- Led by Director Yannis Semertzidis
- Physics at CAPP:
 - Dark Matter Axion Search (Cosmic Frontier)
 - Storage Ring Proton EDM (Strong CP)
 - Muon $g-2$, J-PARC, COMET, CAST, ARIADNE
- Located at and working with KAIST (Korea Advanced Institute of Science and Technology)
- 50+ members and growing
CAPP’s Axion Research

Axion Research at CAPP

CULTASK

CAPP-PACE (9)
CAPP8TB (6)
CAPP18T (3)
CAPP12T (0.5)
CAPP25T (0.5)

CAPP/CAST

ARIADNE & GNOME
Axion Detection Scheme (CULTASK)

P. Sikivie’s Haloscope:

Axion Conversion Power ($\sim 10^{-24}$W):

$$P_{a\rightarrow\gamma\gamma} = g_{a\gamma}^2 \frac{\rho_a}{m_a} B^2 V C_{mn} \text{min}(Q_L, Q_a)$$

Signal to Noise Ratio:

$$\text{SNR} = \frac{P_{\text{signal}}}{P_{\text{noise}}} = \frac{P_{a\rightarrow\gamma\gamma}}{k_B T_{\text{syst}}} \frac{1}{\Delta f_a} \left(\frac{t_{\text{int}}}{T_{\text{syst}}} \right)$$

Scan rate:

$$\frac{df}{dt} \sim B^4 V^2 C^2 Q_L T_{\text{syst}}^{-2}$$

Cryogenics

<50mK

High Field SC Magnet

25T and then 35T

BNL (HTS Technology) Design

SQUID Amplifier

SQUID or JPA (commercial?)

High Q Tunable Cavity

Superconducting Coating

Prof. Jhinhwan Lee of KAIST

To RF Receiver

(Reverse) Primakoff Effect

P. Sikivie’s Haloscope:

Axion Conversion Power ($\sim 10^{-24}$W):

$$P_{a\rightarrow\gamma\gamma} = g_{a\gamma}^2 \frac{\rho_a}{m_a} B^2 V C_{mn} \text{min}(Q_L, Q_a)$$

Signal to Noise Ratio:

$$\text{SNR} = \frac{P_{\text{signal}}}{P_{\text{noise}}} = \frac{P_{a\rightarrow\gamma\gamma}}{k_B T_{\text{syst}}} \frac{1}{\Delta f_a} \left(\frac{t_{\text{int}}}{T_{\text{syst}}} \right)$$

Scan rate:

$$\frac{df}{dt} \sim B^4 V^2 C^2 Q_L T_{\text{syst}}^{-2}$$

Cryogenics

<50mK

High Field SC Magnet

25T and then 35T

BNL (HTS Technology) Design

SQUID Amplifier

SQUID or JPA (commercial?)

High Q Tunable Cavity

Superconducting Coating

Prof. Jhinhwan Lee of KAIST

To RF Receiver

(Reverse) Primakoff Effect
Axion Lab with 7 Low Vibration Pads in KAIST Munji campus
CAPP Experimental Hall (LVP)
Magnets

<table>
<thead>
<tr>
<th>B field</th>
<th>Bore (cm)</th>
<th>Material</th>
<th>Vendor</th>
<th>Delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>26T</td>
<td>3.5</td>
<td>HTS</td>
<td>SUNAM</td>
<td>2016</td>
</tr>
<tr>
<td>18T</td>
<td>7</td>
<td>HTS</td>
<td>SUNAM</td>
<td>2017</td>
</tr>
<tr>
<td>9T</td>
<td>12</td>
<td>NbTi</td>
<td>Cryo-Magnetics</td>
<td>2017</td>
</tr>
<tr>
<td>8T</td>
<td>12</td>
<td>NbTi</td>
<td>AMI</td>
<td>2016</td>
</tr>
<tr>
<td>8T</td>
<td>16.5</td>
<td>NbTi</td>
<td>AMI</td>
<td>2017</td>
</tr>
<tr>
<td>25T</td>
<td>10</td>
<td>HTS</td>
<td>BNL/CAPP</td>
<td>2020</td>
</tr>
<tr>
<td>12T</td>
<td>32</td>
<td>Nb$_3$Sn</td>
<td>Oxford</td>
<td>2020</td>
</tr>
</tbody>
</table>

Refrigerators

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Model</th>
<th>T_b (mK)</th>
<th>Cooling power</th>
<th>Installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BlueFors (BF3)</td>
<td>LD400</td>
<td>10</td>
<td>18µW@20mK 580µW@100mK</td>
<td>2016</td>
</tr>
<tr>
<td>BlueFors (BF4)</td>
<td>LD400</td>
<td>10</td>
<td>18µW@20 580µW@100</td>
<td>2016</td>
</tr>
<tr>
<td>Janis</td>
<td>HE3</td>
<td>300</td>
<td>25µW@300mK</td>
<td>2017</td>
</tr>
<tr>
<td>BlueFors (BF5)</td>
<td>LD400</td>
<td>10</td>
<td>18µW@20mK 580µW@100K</td>
<td>2017</td>
</tr>
<tr>
<td>BlueFors (BF6)</td>
<td>LD400</td>
<td>10</td>
<td>18µW@20mK 580µW@100K</td>
<td>2017</td>
</tr>
<tr>
<td>Leiden</td>
<td>DRS1000</td>
<td>100</td>
<td>1mW @100mK</td>
<td>2018</td>
</tr>
<tr>
<td>Oxford</td>
<td>Kelvinox</td>
<td><30</td>
<td>400 @120mK</td>
<td>2017</td>
</tr>
</tbody>
</table>
CULTASK Refrigerators and Magnets

Refrigerators

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Model</th>
<th>T_B (mK)</th>
<th>Cooling power</th>
<th>Installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BlueFors (BF3)</td>
<td>LD400</td>
<td>10</td>
<td>18µW@20mK, 580µW@100mK</td>
<td>2016</td>
</tr>
<tr>
<td>BlueFors (BF4)</td>
<td>LD400</td>
<td>10</td>
<td>18µW@20, 580µW@100</td>
<td>2016</td>
</tr>
<tr>
<td>Janis</td>
<td>HE3</td>
<td>300</td>
<td>25µW@300mK</td>
<td>2017</td>
</tr>
<tr>
<td>BlueFors (BF5)</td>
<td>LD400</td>
<td>10</td>
<td>18µW@20mK, 580µW@100K</td>
<td>2017</td>
</tr>
<tr>
<td>BlueFors (BF6)</td>
<td>LD400</td>
<td>10</td>
<td>18µW@20mK, 580µW@100K</td>
<td>2017</td>
</tr>
<tr>
<td>Leiden</td>
<td>DRS1000</td>
<td>100</td>
<td>1mW @100mK</td>
<td>2018</td>
</tr>
<tr>
<td>Oxford</td>
<td>Kelvinox</td>
<td><30</td>
<td>400 @120mK</td>
<td>2017</td>
</tr>
</tbody>
</table>

Magnets

<table>
<thead>
<tr>
<th>B field</th>
<th>Bore (cm)</th>
<th>Material</th>
<th>Vendor</th>
<th>Delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>26T</td>
<td>3.5</td>
<td>HTS</td>
<td>SUNAM</td>
<td>2016</td>
</tr>
<tr>
<td>18T</td>
<td>7</td>
<td>HTS</td>
<td>SUNAM</td>
<td>2017</td>
</tr>
<tr>
<td>9T</td>
<td>12</td>
<td>NbTi</td>
<td>Cryo-Magnetics</td>
<td>2017</td>
</tr>
<tr>
<td>8T</td>
<td>12</td>
<td>NbTi</td>
<td>AMI</td>
<td>2016</td>
</tr>
<tr>
<td>8T</td>
<td>16.5</td>
<td>NbTi</td>
<td>AMI</td>
<td>2017</td>
</tr>
<tr>
<td>25T</td>
<td>10</td>
<td>HTS</td>
<td>BNL/CAPP</td>
<td>2020</td>
</tr>
<tr>
<td>12T</td>
<td>32</td>
<td>Nb$_3$Sn</td>
<td>Oxford</td>
<td>2020</td>
</tr>
</tbody>
</table>
- R&D Machine preparing for CAPP25T
- First complete axion experiment in Korea
- Optimization study for
 - Cryogenics and cryo-RF
 (Heat vs Noise)
- First engineering run in Jan. 2018
 - 2.45 – 2.50 GHz scan for 22 days
 - Flawless operation of
 - Freq. tuning system w/ Piezo actuators and a sapphire rod
 - DAQ and Controls
 - Target sensitivity: 10*KSVZ
- Second run is about to start
 - 2.50 – 2.75 GHz
- T_{cavity} : $< 40 \text{mK (WR)}$
- Magnetic field: 8T
- Bore size: 11.8cm
- Cavity volume: 0.59L
- Frequency: 2.45~2.75GHz
 (2.45~2.50 at 1st run)
- Q unloaded: $> 80,000$
- Low noise amplifier: HEMT (1K noise)
- C (geometrical factor) > 0.55
- DAQ Efficiency: 0.45
- Target sensitivity: $10 \times \text{KSVZ}$
Cavity: OFHC Cu split type
 Unloaded Q-factor of $\sim 120,000$ w/ Sapphire rod
 Pure (6N) Cu and Al (annealed) will be fabricated

FTS: Attocube piezoelectric actuators
 Thermal link to 1K plate
 \rightarrow Sapphire rod to cavity by cryo bearing
 Rotator resolution of 1/1000 deg \rightarrow 16 kHz per step
CAPP-PACE

RF read-out chain & Controls

July 5th 2018
ICHEP - 2018 Seoul
CAPP-PACE 1st data (2.24-2.50 GHz)
CAPP-PACE Sensitivity (planned)
How to improve?

- **Maximize B^2V**
 - 25T 10cm bore HTS magnet by BNL (2020)
 - 12T 32cm bore LTS magnet by Oxford (2020)
 - Way to increase frequency with volume fixed
 - Dielectric rings (TM_{030} and TM_{050})
 - Photonic cells

- **Scan faster (minimize T_{amp} \Leftarrow dominating factor)**
 - Quantum Amplifier - SQUID or JPA
 - Optimize cryo-RF receiver chain

- **Others**
 - Improve Q-factor of cavity – pure metal or SC cavity
 - Dead-time-less DAQ
25T 10cm bore HTS magnet by BNL

- The first (of 24) pancake wound! - test will follow
- 5 km of SC tape will be delivered next 5 months
• “Cold Terminator method” with cryo-switch
• “On-Off Resonance method” ADMX style
• Custom-made Y-factor method
• LHe dewar tests
CAPP-PACE NT Measurements

Before Corrections

Cold Terminator Method

After Corrections

1.4 K

1.0 K
Andrei Matlashov is leading an effort to optimize SQUID for axion experiment
New type of microwave SQUID amplifier from IPHT (Jena, Germany)

Sergey Uchaikin (from D-Wave) will join the group in July to lead JPA effort
Timeline (CAPP-PACE)

<table>
<thead>
<tr>
<th></th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>now</td>
<td>2/4</td>
<td>%</td>
</tr>
<tr>
<td>CAPP-PACE 1st run</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Cavity size up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAPP-PACE 2nd run</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>SQUID optimization</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CAPP-PACE 3rd run</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>High frequency cavity</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>25T magnet delivery</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CAPP-25T commission / CAPP-PACE 4th run</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

- **2018**:
 - 10KSVZ-50MHz-22days
 - Twice bigger, 3times faster
 - 10KSVZ-250MHz-40days
 - <0.5K
 - KSVZ-7.5MHz-a year
 - ~7.5GHz, ~12GHz
 - 25T, 10cm bore size
 - DFSZ-50MHz-a year
Timeline (CAPP25T)

<table>
<thead>
<tr>
<th>CAPP25T</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnet delivery from BNL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnet Installation & commissioning (test)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design & fabricating cavity, FTS and RF electronics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detector Commissioning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Run</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics Run</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Axion Research at CAPP/IBS in Korea is getting mature

• CAPP-PACE is becoming a complete axion experiment and leading R&D efforts of CAPP

• Major R&D Efforts
 – Higher B Field: HTS (18T, 25T…)
 – Larger Volume: (12T 32cm LTS magnet)
 – Adding SQUID or JPA
 – R&D for Higher Frequencies (>10 GHz)

• Stay tuned for optimized Quantum Amplifiers!
Thank You For Your Attention!