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Introduction 

❖  Dark Matter and the Standard 
Model

❖  Numerous evidences
❖  A variety of candidates
❖  WIMP (Weakly Interacting Massive 

Particle)
❖  Worldwide efforts to search for DM

(Credit:	ESA	and	the	Planck	Collaboration.)	



Introduction 
❖  Dark Matter Direct Detection

(COSINE-100 Dark Matter Experiment)
(CREDIT: PRESTON HUEY/SCIENCE)

❖  WIMP rates
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Eee = q(ER)ER, (3.3)

with ✏(E0)  1 the experimental e�ciency/acceptance. In the equations above ER is the
recoil energy deposited in the scattering process (indicated in keVnr), while Eee (indicated
in keVee) is the fraction of ER that goes into the experimentally detected process (ioniza-
tion, scintillation, heat) and q(ER) is the quenching factor, GT (E0, Eee = q(ER)ER) is the
probability that the visible energy E0 is detected when a WIMP has scattered o↵ an isotope
T in the detector target with recoil energy ER, M is the fiducial mass of the detector and T
the live–time of the data taking. Moreover,
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where NT is the number of targets T per unit mass, while ⇢� and m� are the WIMP local
density and mass. The most general WIMP–nucleon interaction [39] (including momentum
and velocity dependence) can be parameterized by making use of the interaction Hamiltonian
which descends from non–relativistic EFT[8, 9]:

H =
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⌧=0,1

15X
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c⌧kOk t
⌧ , (3.5)

where t0 = 1, t1 = ⌧3 denote the the 2 ⇥ 2 identity and third Pauli matrix in isospin space,
respectively, the dimensional -2 isoscalar and isovector coupling constants c0k and c1k are
related to those to protons and neutrons cpk and cnk by cpk = (c0k + c1k)/2 and cnk = (c0k � c1k)/2
and the operators Oi are for instance listed in Equations (12) and (13) of [9]. Using the
notation of [9]:
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and, including velocity–dependent terms:

R⌧⌧ 0
l = R⌧⌧ 0

0,l +R⌧⌧ 0
1,l (v

2 � v2min). (3.8)

The factor 10�6 in front of Eq. (3.6) is to express the di↵erential cross section in
GeV�2/keV if the c⌧k couplings are expressed in GeV�2. The WIMP response functions R⌧⌧ 0

l
are provided in Eq.(38) of [9] (but in the equation above the factor q2/m2

n that multiplies
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proton–philic Spin–dependent Inelastic Dark Matter (pSIDM) 

If the WIMP particle couples only to protons (cn/cp<<1) in a spin-
dependent way the rate for Germanium and Xenon detectors is 

strongly suppressed and their bounds can be evaded



proton–philic Spin–dependent Inelastic Dark Matter (pSIDM) 

❖  Low v_min can explain the DAMA excess 
and the null signal from other experiments

For appropriate choice of  parameters WIMP-
fluorine scatterings can be kinematically 

forbidden while WIMP-sodium scatterings can 
explain the DAMA effect  



proton–philic Spin–dependent Inelastic Dark Matter (pSIDM) 

❖  Non-relativistic effective models

A.L.Fitzpatrick, W.Haxton, E.Katz, N.Lubbers and Y.Xu, JCAP1302, 004 
(2013),1203.3542;
N.Anand, A.L.Fitzpatrick and W.C.Haxton, Phys.Rev.C89, 065501 
(2014),1308.6288.
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❖  Reassemble the integration
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❖  Halo-independent analysis

latter is expressed in the detector’s reference frame. Due to this latter property, that ensures
the validity of Eq.(3.17) for any velocity distribution, in the following we choose to express
the rate in the lab rest frame.

Given a time–dependent signal S(t) ⌘ R[E0
1,E

0
2]
(t), present direct detection experiments

have either access to the time average of S, i.e.:
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or, as in the case of the DAMA experiment, to the yearly modulation amplitude S1, defined
as the cosine transform of S:
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with T=1 year and t0=2 June. In the halo independent method no assumptions are made
on the velocity distribution f , so that the two halo functions ⌘̃0(v) and ⌘̃1(v) are subject to
the very general conditions:

⌘̃0(v2)  ⌘̃0(v1) if v2 > v1,

|⌘̃1|  ⌘̃0 at the same v,

⌘̃0(v � vesc) = 0, (3.22)

with vesc the galactic escape velocity expressed in the lab rest frame. In particular, it has
been recently shown that, for a given set of annual modulation experimental data, if the e↵ect
is totally ascribed to the time–dependent change of reference frame between the lab and the
Galaxy, even in a halo-independent approach it is possible to improve the second constraint
of Eq.(3.22), i.e. to get |⌘̃1/⌘̃0| < a with a <1 (namely, until now only an analysis of the
DAMA data restricted to velocity distributions which are isotropic in the galactic rest frame
is available, with values of a varying from ' 0.14 and ' 0.25 depending on the WIMP mass
[41], although the same procedure can in principle be applied to the non–isotropic case).
However, allowing for a possible variation of the WIMP local density ⇢ with the Earth’s
position, the general range of ⌘̃1 given in Eq.(3.22) is in principle always saturated.

The continuous halo function ⌘̃(v) depends in principle on an infinite number of param-
eters. However, for practical purposes a possible approach to this problem is to parameterize
⌘̃0(v) with a step function sampled in a large–enough number of velocity steps, i.e., to set:

⌘̃0,1(v) =
NX

k=1

⌘̃k0,1✓(v � vk�1)✓(vk � v), (3.23)

or, equivalently:
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Expanding explicitly the square of vmin(ER) and setting:
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the predicted rate can then be written as:
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with:

(R̄0,1, R̄1E , R̄1E�1) = NTMT ( ¯̂R0,1,
¯̂R1E ,

¯̂R1E�1). (3.30)

The functions of Eq.(3.31) are quadratic in the two couplings cn=cn4 and cp=cp4 so that, in
terms of r ⌘ cn

cp :

R̄(r) =
r(r + 1)

2
R̄(r = 1) + (1� r2)R̄(r = 0) +

r(r � 1)

2
R̄(r = �1). (3.31)

In the present analysis we will consider only a standard WIMP–nucleus spin–dependent
interaction with no explicit velocity dependence in the cross section. In this case only the
integrated function R̄0 is needed to evaluate expected rates. For each experiment it can be
tabulated as a function of ER and for r = �1, 0, 1. Evaluations at run time for di↵erent
values of m�, � and r can be obtained in a fast and e�cient way through linear combinations
of R̄0 interpolations using (3.30) and (3.32). Some examples of the functions R̄0 are plotted
in Fig. 2 as a function of ER.
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with the relations:

⌘̃k0,1(vmin) =
NX

i=k
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in a large–enough set of velocity steps (streams), v = [v1, ..., vN ]. Actually, a halo function of
the form (3.25) corresponds to a velocity distribution given by f(v) =

PN
k �k�(v � vk) that

has been understood in the literature to extremize “generalized moments” of the form (3.17),
i.e. S =

R1
v⇤ H(v)f(v, t) dv in terms of Nc + 1 streams when Nc experimental constraints

Sk, k = 1...Nc (plus the normalization of f(v)), are provided[41]. This has been used in the
literature to minimize the likelihood function L(f, Sk)[12, 13, 42] in terms of N  Nc + 1
streams . Notice, however, that the likelihood function in the analysis of Section 4 will
depend on the two independent halo functions ⌘̃0 and ⌘̃1, so that in our case the number of
streams N needed to minimize L is not related to the number of experimental constraints
Nc. However, as it is evident from Eq.(2.3), the pSIDM scenario that we wish to analyze
leads to a velocity range for the DAMA modulation e↵ect vmin

DAMA < v < vmax
DAMA which is

compressed to values close to vesc (typically, vesc � vmin
DAMA  50 km/sec) so in such a small

range a relatively small value of N still allows a good sampling of the halo functions ⌘̃0,1.
In fact, taking into account the first of the requirements of Eq.(3.22), the halo function ⌘̃0
that minimizes the tension between DAMA and the constraints of other experiments (and
so maximizes the likelihood function used in Section 4) is given by the minimal one that can
explain the DAMA e↵ect, i.e. to a halo function ⌘̃0 monotonically decreasing with vmin that
saturates the condition in the second line of Eq.(3.22) and flattens–out below vmin

DAMA, i.e.
⌘̃(v < vmin

DAMA)=⌘̃(vmin
DAMA). The former condition implies:

⌘̃0,k = max
i>k

|⌘̃1,i|, (3.26)

while the latter corresponds to:

�⌘̃k1 = 0 for vk < vmin
DAMA. (3.27)

As a consequence of the considerations above, in Section 4 we will adopt the ⌘̃1,k’s as free
parameters subject to (3.27) and use (3.26) for the ⌘̃0,k’s.
When the piece–wise definition of the ⌘ function (3.23) is used in (3.19) one gets:
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❖  DAMA experiment and Annual modulation

Average rate

Annual modulation
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❖  Likelihood analysis

Figure 2. Left hand plot: integrated response functions R̄0 defined in Eqs.(3.30) and (3.32) as
a function of ER for the DAMA experiment [1]; right hand plot: the same for XENON1T[2]. As
explained in Section 3 a di↵erent response function must be tabulated for each experimental energy
bin, nuclear target (including di↵erent isotopes, see Eq.(3.15)) and for three values of the coupling ratio
r = cn/cp (in order to perform the isospin rotation of Eq(3.33)). Including r = �1, 0, 1, all energetic
bins and target isotopes with a non–vanishing spin–dependent response function this implies, for
instance, 72 response functions for DAMA and 6 for XENON1T.

4 Results

In this Section we compare the pSIDM scenario reviewed in Section 2 to the current dark
matter direct detection bounds listed in Appendix A in a statistical analysis where we wish
to construct approximate 2D frequentist confidence intervals for the set of parameters ✓ ⌘
(m�, �, r) with the velocity distribution treated as a set of nuisance parameters ⌘. In order
to do so, in the following we will consider both a halo–independent scenario and a more
conventional Maxwellian velocity distribution. For a given dataset d, including NDAMA bins
for the DAMA modulation amplitude and i = 1, ..., Nexp experiments each with N i

bin energy
bins, we construct the Likelihood function:

� 2 lnL(d|⇥) =
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In Eq.(4.1) S1,n is the prediction of the DAMA modulation amplitude in the n–th bin while
Sexp
1,n the corresponding measurement with error �exp

n , Si
0,j the expected rate in the i–the

energy bin of the j–th experiment with N i
j the corresponding measured count rate and Bi

j
the expected background. As far as the background is concerned, we notice that with the
current level of required sensitivities its estimation is subject to large uncertainties. For this
reason we assume the Bi

j ’s as free parameters and minimize the likelihood with respect to
them. This corresponds to taking:
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Figure 3. Profile likelihood of the WIMP mass m� (left) the mass splitting � (center) and of
the coupling ratio r (right) when the generalized halo functions ⌘̃0,1 are parameterized in terms of
Eqs.(3.24, 3.27, 3.26). Red points are subject to the condition (4.6.)

Figure 4. Correlations among the WIMP mass m�, the mass splitting � and of the coupling ratio r
plotted in Fig.(3). Dark shade: �2 lnP < (�2 lnP )min+1; medium shade: �2 lnP < (�2 lnP )min+4;
light shade: �2 lnP < (�2 lnP )min + 9.

�(�2 lnLprof (✓i)) ⌘ �2 lnLprof (✓i) + 2 lnLmax  1, (4.6)

with Lprof (✓i) given by Eq.(4.5). In Fig. 3 the corresponding points are plotted in red.
Notice that these 1� confidence intervals, sometime called 1� likelihood intervals, have a 68%
coverage probability in the limit of large samples when the likelihood is well approximated
by a Gaussian, but do not necessarily have a coverage probability of 68% if the likelihood is
non-Gaussian, as is likely the case from inspection of Fig. 3. Correlations between couples
of the parameters (m�, �, r) can be obtained by plotting contour plots of �(�2 lnLprof (✓i)):
the thee corresponding plots are shown in Fig.(4), with 1–� likelihood intervals in dark blue.

Quantitatively, in the halo–independent case the 1–� likelyhood intervals for the pSIDM
parameters turn out to be:

12.5 GeV  m�  15.7 GeV

22.1 keV  �  26.1 keV

�0.039  r  �0.016. (4.7)

The fact that the value r=0 is ' 2.4 � away from the best-fit value signals tension with
constraints from the neutron–odd targets 129Xe and 131Xe in XENON1T and PANDA. In-
deed, the value r = cn/cp '=-0.03 corresponds to a cancellation in the xenon spin–dependent
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For this choice of parameters, pSIDM explains DAMA/LIBRA 
phase-1 in compliance with ALL other constraints!

DAMA/LIBRA phase-2 changed it all : lower 
threshold brings in WIMP-iodine scatterings
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❖  pSIDM update with DAMA run2
❖  Harder to fit iodine in the first two bin
❖  Best fit: χ2 = 20.4 with 11 d.o.f. (p-value: 0.04)
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discuss DAMA phase2 in non-
relativistic effective  models
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DAMA/LIBRA-phase2 in WIMP effective models 

❖  DAMA released the first model independent results

Si(E) = S0(E) + Sm(E) cos ω(ti − t0) + Zm(E) sin ω(ti − t0) 

= S0(E) + Ym(E) cos ω(ti − t∗). 

Bernabei et al. (DAMA Collaboration), 1805.10486
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❖  Elastic effective models with the standard Maxwellian

A.L.Fitzpatrick, W.Haxton, E.Katz, N.Lubbers and Y.Xu, JCAP1302, 004 
(2013),1203.3542;
N.Anand, A.L.Fitzpatrick and W.C.Haxton, Phys.Rev.C89, 065501 
(2014),1308.6288.



DAMA/LIBRA-phase2 in WIMP effective models 

❖  Likelihood analysis

Sunghyun Kang, S.S., G. Tomar, J.H. Yoon, 

arXiv:1804.07528



DAMA/LIBRA-phase2 in WIMP effective models 

❖  Nuclear response functions

Sunghyun Kang, S.S., G. Tomar, J.H. Yoon, 

arXiv:1804.07528



DAMA/LIBRA-phase2 in WIMP effective models 

❖  WIMP velocity distribution

Sunghyun Kang, S.S., G. Tomar, J.H. Yoon, 

arXiv:1804.07528

Vmin < 200 km/sec at large 
WIMP mass → bad fit to the 

DATA unless the cross section 
depends on velocity
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❖  DAMA modulation amplitudes as a function of the measured ionization 
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1 Introduction

Weakly Interacting Massive Particles (WIMPs) are the most popular candidates to provide
the Dark Matter (DM) which is believed to make up 27% of the total mass density of the
Universe [1] and more than 90% of the halo of our Galaxy, and a worldwide experimental
effort is under way to detect them. In particular the DAMA experiment [2–4] has been
measuring for more than 15 years a yearly modulation effect with a sodium iodide target
consistent with that expected due to the Earth rotation around the Sun from the elastic
scattering of WIMPs, claiming a statistical significance of more than 9 σ. Many experimental
collaborations using nuclear targets different from NaI and various background–subtraction
techniques to look for WIMP–elastic scattering (XENON1T [5], LUX [6], XENON100 [7],
XENON10 [8], KIMS [9, 10], CDMS-Ge [11], CDMSlite [12], SuperCDMS [13], CDMS II [14],
SIMPLE [15], COUPP [16], PICASSO [17], PICO-2L [18], PICO-60 [19]) have failed to
observe any anomaly so far, implying severe constraints on the most popular WIMP scenarios
used to explain the DAMA excess.

Recently the DAMA collaboration has released first result from the upgraded DAMA/
LIBRA-phase2 experiment [20]. The two most important improvements compared to the
previous data is that now the exposure has almost doubled and the energy threshold has
been lowered from 2 keV electron–equivalent (keVee) to 1 keVee. In particular, this latter
feature has improved the chances to exploit the DAMA annual modulation amplitudes spec-
tral energy shape to test specific WIMP models. The most popular of them, predicted in
ultraviolet completions of the Standard Model such as Supersymmety or Large Extra Di-
mensions, implies a Spin–Independent (SI) WIMP–nucleus scattering cross section σχN that
scales with the square of the number of nucleon targets in the nucleus:

σχN ∝ [cpZ + (A− Z)cn]2 , (1.1)

with A the nuclear mass number, Z the nuclear charge and cp,n the WIMP couplings to
protons and neutrons, with cn=cp (i.e. an isoscalar interaction) in the most natural real-
izations. On the other hand, the expected WIMP–induced scattering spectrum depends on
a convolution on the velocity distribution f(v⃗) of the incoming WIMPs, usually described
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with maximum at approximately 2 keVee and approaching modulation phase inversion at
lower energies, where instead the term due to iodine is steeply increasing. Such behavior
is in agreement to the findings of Ref.[25] for the coupling c1 and holds also for all the
other interaction terms of Eq.(2.1). In the case of c1 the iodine contribution is naturally
enhanced compared to that of sodium due to the dependence of the cross section on the
square of the atomic mass number of the target (see Eq. (1.1)). As a consequence, the
r parameter needs to be tuned to suppress the iodine contribution (i.e. close to the value
rIodine ≃ −53/(127−53) ≃ -0.7, see Eq.(1.1)), since below 2 keVee the measured modulation
amplitudes are increasing only mildly. In the case of c1 this inevitably reduces also the sodium
contribution, since −Z/(A − Z) is roughly similar (≃ -0.9) also for sodium, enhancing the
fine tuning. This is clearly visible in the first panel of Fig. 2. On the other hand, for all the
other interactions of Eq.(2.1) the value of r corresponding to a cancellation in the nuclear
response function for iodine is normally unrelated to that for sodium, so that the iodine
contribution can be suppressed without reducing that from sodium in a more natural way.
On top of that, with the exception of the Φ′′ nuclear response function, all the other ones
typically show a milder enhancement of the iodine signal compared to that for sodium in the
first place. In particular with the exception of c7 and c14 and, to a lesser extent, c5 and c8,
the contribution of the scattering amplitude proportional to v⊥2

T (see Eq.(A.1) is completely
negligible. On the other hand for c7 and c14 only the term proportional to v⊥2

T is present in
the cross section, while for c5 and c8 such term is not negligible (for the choice of parameters
corresponding to the absolute minima of Table 1 it contributes between 10% and 25% of
the modulation amplitude in the first bin due to the iodine contribution through the M
nuclear response function). As a consequence of this, the interaction terms c4, c6, c7, c9, c10
and c14 depend on the spin–dependent nuclear response functions Σ′′ and/or Σ′ which are
proportional, respectively, to the component of the nuclear spin along the direction of the
transferred momentum or perpendicular to it. This implies only a factor ≃ two hierarchy
between the WIMP–iodine and the WIMP–sodium cross sections. Moreover, in the case
of c5 and c8 the velocity–independent term of the cross section depends on the ∆ response
function, which is proportional to the nucleon angular momentum content of the nucleus,
favoring elements which have an unpaired nucleon in a non s–shell orbital. Both iodine and
sodium have this feature, implying also in this case no large hierarchy between the cross
sections off the two nuclei. Namely, numerically the isoscalar response function at vanishing
momentum transfer W 00

T∆(q → 0) for sodium is a factor ≃ 0.25 smaller compared to that for
iodine. Finally, the WIMP–nucleus cross section for interaction c13 is driven by the Φ̃′ nuclear
response function for which W 00

T Φ̃′(q → 0) for sodium turns out to be a factor ≃ 6.3 larger
than that for iodine. The bottom line is that, compared to the standard SI interaction, for
all such effective models the cross section for scatterings off iodine is naturally less enhanced
or even subdominant, implying a lower fine tuning of the parameters. On the other hand,
interactions c3, c12 and c15 are driven by the Φ′′ nuclear response function, which is sensitive
to the product of the nucleon spin and its angular momentum. As a consequence, similarly
to the SI case, such interaction favors heavy elements over light ones, leading to a large
hierarchy between iodine over sodium. However, as explained above, in this case the value of
r corresponding to a suppression of the iodine response function is quite different to that for
sodium (for instance, we checked that riodine ≃ -2.3 and rsodium ≃ -0.7 for a 2 keVee recoil
energy). This implies that, at variance with SI scattering, the iodine contribution for Φ′′ can
be suppressed without reducing that for sodium, and less tuning is needed to obtain a good
fit.
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❖  5-sigma best fit DAMA regions with XENON1T(solid purple line) and 
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Conclusions 
❖  No fit of the DAMA result is available in the literature in terms of 

non–relativistic EFT models
❖  In addition to increasing the exposure, the phase2 result also 

includes a lower energy threshold, and the new spectrum of 
modulation amplitudes no longer shows a maximum, but is rather 
monotonically decreasing with energy

❖  We extended an assessment of the goodness of fit of the new 
DAMA result to NREFT scenarios

❖  All models yield an acceptable χ2

❖  All best-fit minima are inconsistent with the bounds from 
XENON1T and PICO60
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